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ABSTRACT OF DISSERTATION

A Polynomial Primel-Dual Interior Point Method
for Convex Programming With Quadratic Constraints
by
Lee James Lehmkuhl
Captain, United States Air Force
Doctor of Science in Operations Research

The George Washington University

This study involves the solution of a convex nonlinear programizing problem using a primal-dual
interior point algorithm. The problem is to minimize 3T subject to g(x) > 0,i=1 to m, where each
g;(x) is a concave quadratic function. We specify certain common regularity conditions to guarantee the
existence of a solution x* and a vector of KKT multipliers u* > 0 such that (x*, u™) solves the
associated Wolfe dual. The algorithm is motivated by the following eptimality conditions, given a fixed

parameter 4 > 0, for x and u such that ¢,(x) >0and u; >0,i=1,..., m:
m
VL{xu) —b- 3} u;Vg(x) =0
‘-:]
yg(x) — p=0,i=1,..,m

The aigorithm uses Newton’s method to approximately solve these equations for a decreasing sequence
{uk} where pkl() as k — + 00. A step size procedure maintains feasibility and seeks to decrease sume
merit function.

The Newton direction obtained has several interesting features. The direction in the primal
variable x is clusely related to the Newton direction generated by a Sequential Unconstrained
Minimization Technique employing the logarithmic barrier function (SUMT). In fact, the primal
directiont can be viewed as a SUMT Newton direction with a perturbed barrier function Hessian matrix.
The perturbation depends on the degree to which w;9,(x) - p -~ @, or perturbed complementary
slackness (PCS), is violated for each i. If the deviation from PCS is assumed to be small, the primal
direction is close enough to the SUMT Newton direction that it may be used as the search direction in
a SUMT algorithm. The resulting primal variable algorithm retains the polynomial computational
complexity shown for SUMT.

The Newton direction in the dual variables generated by the primal-dual algorithm is also studied.
A modification to the dual step size and direction allows the progress in reducing PCS at each iteration

to be calculated and therefore controlled. This control allows the deviation from PCS to be kept small
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Abstract

A POLYNOMIAL PRIMAL-DUAL INTERIOR POINT
METHOD FOR CONVEX PROGRAMMING
WITH QUADRATIC CONSTRAINTS
by Lee James Lehmkuhl

Anthony V. Fiacco. Director of Research

This dissertation 1uvolves the solution of a convex nonlinear programming
problem using a primal-dual algorithm developed in McCormick(1991a and 1991b).
The problem is to minimize b'x subject to g,(x) >0, i=1 to m, where each g,(x) is
a concave quadratic function. We specify certain common regularity conditions to
guarantee the existence of a solution x* and a vector of KKT multipliers u* > 0
suck that (x*, u*) solves the associated Wolfe dual: maximize
m

L(x.u) =bTx — _Zlul-gi(x) subject to V L(x,u)=0 and u > 0. The algorithm is
1=

motivated by the following optimality conditions for the problem stated above,

given a fixed parameter p > 0:

V., L(x.u) = 0

u;g{x) — g =0,i=1..., m.
The algorithm uses Newton's method to approximately solve these equations for a
decreasing sequence {pk} where ,uklO as k — + 00. A step size procedure maintains

feasibility and seeks to decrease some merit function. The Newton direction is the

1




negative inverse of the Jacobian matrix of the above equations multiplied by the
vector of the equations.

The Newton direction obtained has several interesting features. The direction
in the primal variable x is closely related to the Newton direction generated by a
Sequential Unconstrained Minimization Technique employing the logarithmic
barrier function (SUMT). In fact. the primal direction can be viewed as a SUMT
Newton direction with a perturbed barrier function Hessian matrix. The
perturbation. that is. the degree to which the primal direction differs from the
SUMT Newton direction depends on the degree to which u;g,(x) — ¢ = 0, or
perturbed complementary slackness (PCS), is violated for each i. If the deviation
from PCS is assumed to be small. the primal direction is close enough to the
SUMT Newton direction that it may be used as the search direction in a SUMT
algorithm. The resultins primal variable algorithm retains the polynomial
computational complexity shown for SUMT by den Hertog, Roos. and
Terlaky(1990). The Newton direction in the dual variables generated by the
primal-dual algorithm is also studied. This direction seeks to change each dual
variable to adapt to changes in its associated constraint g;(x) as x changes along
the primal Newton direction, and to reduce the violation of PCS at the current
value of x. A modification to the dual step size and direction allows the progress in
reducing PCS at each iteration to be calculated and therefore controlled. This
control allows the deviation from PCS to be kept small throughout the primal-dual
algorithm’s progress, and thus the polynomial complexity shown for the primal

variable algorithm discussed above follows for the primal-dual algorithm. Finally,




N

the effect of the modification also allows the use of the results in Anstreicher(1990)

for quadratic programming with SUMT. These can be applied to show another
proof of polynomiality for linear programming with the modified primal-dual

algorithm.
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CHAPTER I: INTRODUCTION

L1 Background

Constrained optimization is the process of minimizing (or maximizing) the
value of a function of one or more variables over a set of allowable values for those
variables. The set of allowable values is known as the feasible region. This thesis
presents a method, or algorithm, of constrained optimization for a particular class
of problems. Subsequent chapters contain a rigorous definition of the problem to
be solved, as well as coverage of fundamental theory and related research; but for
introductory purposes a general, non-rigorous background description is in order.
The class of problems considered here requires the minimization of a convex
quadratic function defined over E", known as the objective function. The feasible
region is defined by one or more concave quadratic functions, known as constraints,
in the following manner: the feasible region is the set of those values of x € E"
which cause each constraint to be non-negative. The algorithm moves toward the
solution along a series of points in the interior of the feasible region, that is, the

subset of the feasible region where the constraints are strictly positive; hence the




term “‘interior point method’. The problem structure provides a convex feasible
region, which together with the convex objective function results in a convex
quadratic minimization problem. This class of problems is of significant interest--
for instance, a constraint on the maximum Euclidian distance between two points
may be expressed with a concave quadratic constraint like that mentioned above.
So for example, the minimization of the distance between a number of facilities
subject to constraints on the facilities locations, perhaps within a certain service

area, may be modeled as such a problem.

There are several important classes of problems which conform to this
structure. Perhaps the most common and well-known is the linear program, in
which the objective function is linear and the constraints are linear affine. Another
is the convex quadratic program, with a convex quadratic objective function and
linear affine constraints. Such problems occur in practice and require solution. For
example, linear programming may be used to plan the employment of a limited
arsenal of nuclear weapons to maximize the damage inflicted on a foe, or to
minimize friendly casualties for a given level of destruction. Another application is
the allocation of limited resources (labor, parts, equipment, and so on) within a

factory to maximize profit.

Much research has gone into developing algorithms to solve problems of this
type. Some specialized algorithms apply just to the linear program, and others to
the convex quadratic program. Initially, the main goal in algorithm development
was to guarantee convergence to an optimal value. Then, the speed of convergence

and computational considerations came into focus. Some algorithms which perform




well in practice can be shown in a worst case scenario to require a prohibitive
amount of computation effort, while others which possess a more reasonable upper
bound on computational effort may converge so slowly in practice that they prove
useless for solving actual problems. One can thus see the development of two
measures of algorithmic performance. One is the algorithm’s speed, in terms of
computer time, in solving a wide variety of test problems. Another is the
theonretical bound on the number of computations required in the worst case to
solve a general problem of a given size. (The measure of problem size will be
discussed later.) In this paper. the algorithm presented will be analvzed for

convergence and a theoretical bound developed on computational requirements.

1.2 Qrganization of the Dissertation

The dissertation is organized into eight chapters. This introduction is Chapter
I, the remainder of which will be devoted to an overview of the contents of the

subsequent chapters.

Chapter II covers the fundamental concepts of interior point methods and
reviews some current research in the area. The fundamental concepts portion gives
primary emphasis to the logarithmic barrier function and includes a simple
example in E2. After a brief discussion of unconstrained minimization with
Newton’s method, the chapter introduces the concept of computational complexity
of algorithms. The chapter concludes with a survey of recent developments in

analyzing the computational complexity of various interior point methods.




Chapter III begins with the rigorous presentation of the problem to be solved
and the Primal-Dual Algorithm which is the core of this research effort. Several
lemmas show important mathematical properties of the algorithm which will be

used in later analysis.

Chapter IV analyzes the search direction in the primal variables x € E™
generated by the Primal-Dual Algorithm, and shows it to be closely related to the
search direction generated by an interior point method based on the logarithmic
barrier function. With careful bounding of the difference between the two
directions, a primal variable algorithm using the Primal-Dual Algorithm primal
variable search direction inherits convergence and polynomial complexity results of

den Hertog, Roos. and Terlaky(1990) for the logarithmic barrier function method.

Chapter V follows the primal variable analysis of Chapter IV with similar
analysis of the dual variable search direction. An attempt is made to show a type
of monotone convergence in the dual variables toward stationarity, but examples

show that such monotonicity may not occur.

Chapter VI develops a modification to the algorithm, resulting in the Modified
Primal-Dual Algorithm, which adjusts the direction and/or magnitude of
movement in the dual variables to produce the monotonicity sought in Chapter V.
Further analysis shows that the Modified Primal-Dual Algorithm inherits the

convergence and complexity results from Chapter IV.

Chapter VII presents an alternative convergence and complexity result for the




Modified Primal-Dual Algorithm based on the work of Anstreicher. By applying
the Modified Primal-1 .al Algorithm to a linear program with proper initialization,

we show convergence and polynomial complexity precisely as in Anstreicher(1990).

Chapter VIII discusses techniques for meeting the initial feasibility and

centering conditions required by the algorithm.

Chapter IX concludes the dissertation with a summary of key results and

potential areas of future research.




CHAPTER II: FUNDAMENTAL CONCEPTS AND RELATED RESEARCH

II.1 Fundamental Concepts

I1.1.1 Interior Point Methods

This section will present some basic results for understanding the nature and
use of a barrier function as the foundation for an interior point algorithm. The
material covered is not intended to be all-encompassing. Readers who desire more
detail are referred to Fiacco and McCormick(1968, 1990), from which much of this

discussion is drawn.

An interior point method as employed here is one type of Sequential
Unconstrained Minimization Technique (SUMT). As the name implies, the idea
behind SUMT is solving a series of unconstrained problems, the solutions of which
converge to a solution of a constrained minimization problem. There are a variety
of Sequential Unconstrained Minimization Techniques. Some allow the

unconstrained problems to be solved on the boundary or outside of the feasible




region of the original problem. while others maintain strict feasibility. The later
are called interior point methods. Again, a variety of these SUMT interior point
methods exist. We will look at one of the classic types, one where a logarithmic
barrier function is used to enforce feasibility, and a gradual relaxation of the barrier

leads to convergence to an optimal solution.

To be more precise, let us define the general constrained minimization

problem as follows:

min f(x)

s.t. g4(x) >0,1€{1.2. ..., m}

where x € E”, and f and g; are continuously differentiable. We make the standard
assumptions of the existence of x? such that gl-(xo) >0,i€ {1, 2. ..., m} and the
existence of local minima. The unconstrained subproblem is defined in terms of

the logarithmic barrier function ®(x,u) for a fixed p > 0:
. m
min ®(x,u) = f(x) - u,len(g,-(X))
1=
s.t. g;(x) >0,i€{1,2, .., m}

The logarithm of the constraint functions forces the value of ®( - ,u) to become very
large when approaching the boundary of the feasible region, so minimization of
®( - ,p) will move away from the boundary (hence the term ‘“‘barrier function™).

The scalar g is known as the barrier parameter, and its magnitude determines the




strength of this barrier. However, for any g > 0. no matter how small, ®( - ,u) will
approach + oo near the boundary of the fcasible region. In practice the strict
feasibility constraints are essentially ignored when minimizing ®( -.u). since the
function’s structure itself enforces feasibility. The sequence of unconstrained
minimization subproblen:s arises from minimizing $( - 15) for a strictly
monotonic?.ay decreasing positive sequence {pk}. It is shown 1n Fiacco and
McCormick (Theorem 8) that the solutions to these subproblems will converge to a
local minimizer of the constrained problem. Now suppose f(x) and — g;(x). 1 € {1,
2, .... m} are convex. making the problem convex. Then local minimizers are

global minimizers. and the subproblem solutions converge to a global minimizer.

The following simple example shows how such convergence occurs for a convex

problem in EZ. Consider the example problem from McCormick(1983):

min X] + Xy

s.t. — x:f +x9 2 0.
For g > 0 and arbitrary, the logarithmic barrier function for this problem is
B(x,u) = %) + %y — ulin( x4 xy)]

and its gradient and Hessian are

2x
1+—‘,—1_:l—
— X7 X
V&(x,u) = b
1~k
—XT+XA_]




0 —Xf+x2 1 _xl_}.x‘)

V20(x 1) = V2 (——“—)Nﬁ 0]+ - ((———2“———)5>[—2x1 1]

respectively. On the interior of the feasible region, the Hessian is the sum of
positive multiples of two rank one matrices. Each rank one matrix is the product
of a column vector with its transpose. Therefore. the Hessian is positive semi-
definite. and since the two vectors are linearly independent. the Hessian is in fact
positive definite. So V®(x,x) = 0 within the interior of the feasible region is a
sufficient condition for a strict unconstrained minimizer of ®(-,x). Let x(x) denote

such a minimizer. This condition implies
x(pe) =[ —% ; %+u JT

For instance, if 40 = 1, then x(u%) = [ ~% , %]T Solving a sequence of these
subproblems for {,uk}lO, we obtain the “‘central trajectory’, and taking the limit as
{pk}lO yields x* = [ —% , Hr, the global minimizer to the original constrained

problem.

Of course, most problems do not allow an analytical solution for the location of
the central trajectory. The solution of the unconstrained minimizaticn sub-

problem thus becomes a significant part of the logarithmic barrier function SUMT.




Much research has gone into unconstrained minimization in general. resulting in
various candidate algorithms for minimizing ®( - ,u) for a given u. Stecpest
descent. conjugate gradient, quasi-Newton. and Newton's method are some of
possible techniques. Each has advantages and disadvantages, and a detailed
presentation of each is found in McCormick(1983). However, Newton's method has
become the method of choice for the unconstrained sub-problem, both in the
developmental days of SUMT and more recently as the speed of convergence and
computational requirements of interior point algorithms have come under renewed
study. The important role of Newton's method in underpinning the interior point
algorithins studied in this paper calls for a brief discussion of the application of
Newton's method in unconstrained minimization. This is not a rigorous
mathematical development such as is found in McCormick(1983), but rather the

basic ideas needed within the context of this paper.

The initial intent of Newton’s method was to solve a system of n equations in
n variables. The Newton search direction in this case resulted from inverting the
Jacobian matrix of the system of equations and multiplying it by the negative of
the system of equations. An example of this is found in Chapter III. equations
(3.4) and (3.3). In the context of unconstrained minimization, the gradient and
Hessian of the function to be minimized replace the system of equations and
Jacobian, respectively. Thus, Newton's method 1s used to find a point where the
gradient of a function is zero, a condition known as stationarity  ~'.:tionarity is a
necessary condition for a local minimizer. If the function is ~tr- . onvex asin
the previous example, this becomes a sufficient condition for « ©animizer.

We strengthen the continuity assumption to require f and —g;. 1 € {1, 2. ....m} to
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be convex and twice continuously differentiable. and further require V2<I>( - i) to be
positive definite on the interior of the feasible region (which implies strict
convexity). From an arbitrary strictly feasible point x* Newton's method

generates the next point in the search for stationarity as follows:
xk+t1 =gk (VQCD(xk,,u))‘ 1V<I>(xk,,u)/\

where A is a positive step size scalar. For the ‘pure’” Newton’s method, A is equal
to unity; otherwise, the value of A is determined by a line search along the Newton
direction —(VQQ(X/“.#))_ lV@(xk,y) using ®( - ,u) as a merit function. An
important way of motivating Newton's method may be seen by replacing ®( - ,u)
with a quadratic function with a positive definite Hessian. By letting A = 1,
Newton's method finds the global unconstrained minimizer in one step. Thus,
when the behavior of a function between the current point in the search and the
unconstrained minimizer is close to that of the quadratic approximation of the
function formed at the current point, the pure Newton’s method will perform very
well. Indeed, as the sequence of points generated by successive pure Newton moves
nears the minimizer. the quadratic approximation becomes better and better.
Because of this phenomena, Newton’s method with a step size of unity is said to
have an asymptotic quadratic rate of convergence near the minimizer, that is, the
distance from the current point to the minimizer is bounded by a constant times
the square of the distance from the previous point to the minimizer. Another form
of asymptotic quadratic convergence for Newtons method involves the magnitude
of the Newton step. This property, which plays a key role in a number of

complexity results for interior point methods, states that near the minimizer the
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magnitude of the current Newton step is bounded by a constant times the square of
the magnitude of the previous Newton step. However, a step size of unity may not
always be possible--such a step length at times may lead to a point which violates

one or more constraints and is thus not allowable.

Before moving beyond Newton’s method, a few words are required about the
linesearch along the Newton direction when A =1 is not used. Bisection or golden
section search techniques are among those used. It is important to note that the
strict convexity of ®( -,u) on the interior of the feasible region and its behavior
near the boundary applies as well to ®( - i) evaluated along the Newton direction,
so a strict global minimizer with respect to the Newton direction exists. It will be
seen later that for theoretical complexity results the type of linesearch is
unimportant as long as the computational requirements for the linesearch are of the
same order of magnitude as the computational requirements for generating the

Newton direction.

[1.1.2 Computational Complexity

The computational complexity of an algorithm is simply the theoretical worst
case bound on the number of arithmetic computations required to solve a given
type of problem. Such a bound is stated as a function of certain measures of
problem size. Three such measures are prevalent. One 1s the number of bits of
data required to store the problem in a computer, and is denoted as L for length.
The following method for computing L for the linear programming problem {min

cTx | Ax > b, x > 0} is found in Bazaara, Jarvis, and Sherali(1990). We define
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log( - } as the logarithm to the base 2.

L =[1+log(n) + log(m) + (1 +log(1 + |c;])]
J

+ 2 L1 +log(1 + fay;1)] + (1 + log(1 + [by)]]
g ?
Another measure of problem size is the dimension in Euclidian space, denoted n;
and the third is m. the number of constraints. We now present the standard
definition of the function O( - ) used to express computational complexity, using
notation from Papadimitriou and Steiglitz(1982). Let f(n) and h(n) denote

functions from the positive integers to the positive real numbers. Then

f(n) = O(h(n)) « 3 constant k > 0 such that for large enough n,

If f(n) = O(h(n)), we say “f(n) is of order h(n)”. One illustrative example of the
nature of O( ) is that for any constant c, cf(n) = O(f(n)). An expression of

computational complexity will be of the form
N = O(h(n))

where N is the total number of computations, or perhaps iterations. h is some
function from the positive integers to the positive reals, and n is a positive integer
or a vector of positive integers which measures the problem size. For a given

algorithm, knowledge of such a function h( - ) is key in understanding and
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evaluating the complexity of the algorithm, because h( - ) provides a bound on the

growth rate of the computational requirements as the size of the problem increases.

As an illustration, we discuss the computational complexity of the simplex
method for linear programming through a well-known example first shown in Klee
and Minty(1972) and found in both Bazaara, Jarvis and Sherali(1990) and
Papadimitriou and Steiglitz(1982). The gist of the example is that by slightly
perturbing the m constraints defining a m-dimensional unit hypercube and
minimizing — X, over that perturbed hypercube, the simplex method can be made
to visit each vertex of the hypercube. That means the simplex method would
require 2'" iterations to solve this admittedly worst-case problem, and the
computational complexity of the simplex method is O(2™). Thus, increasing the
dimension of the problem by one doubles the computational effort. This is an
example of exponential complexity, from the exponential function K™, K > 1, and
indicates that the computation effort is multiplied by some number greater than
one when a measure of problem size 1s increased by a constant, usually unity. The
implication of exponential complexity is that as problem size becomes large,
computational requirements grow so fast as to outstrip the capabilities of even the
fastest computers. It is important to state clearly, however, that exponential
complexity does not mean an algorithm is not operationally effective. The simplex
method is a good example, for it has and continues to solve all manner of real
world linear programming problems quickly and efficiently. The exponential
complexity does indicate that there are some problems which may take a
prohibitively long time to solve by the simplex method, thus prodding researchers

to find another linear programming algorithm without this drawback. A more
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preferable computational complexity would be expressed by a polynomial function
of problem size, for instance O(L"m®n!) where r, s, and t are known constants.
Under this type of complexity, the increase by a one of a measure of problem size
results in the addition of computational work of lesser order (since, for example,
O((n +1)%) = O(n').) Thus, polynomial complexity avoids the “‘exponential blow
up”’ caused by multiplying the amount of work by some K > 1. The remainder of
this chapter will explore recent advances in polynomial algorithms for linear

programming and other classes of constrained optimization problems.

I1.2 Related Research

Recent years have seen a plethora of polynomial algorithms for various classes
of constrained optimization problems. This section will present an overview of
several, representing some different approaches to solving the constrained
optimization problem. Algorithms for linear programming are the most
predominant, for at least two reasons. First, there exists the very successful and
renowned simplex method, albeit with exponential complexity, so the research goal
of doing ‘“‘better than simplex” is tantalizing. Secondly, the linear affine
constraints allow the employment of linear algebraic techniques (such as
projections into the nullspace defining the feasible region) not suitable for more
general nonlinear constraints. This attribute applies to quadratic programming as
well, which, though not as ubiquitous as linear programming, is also heavily

represented in the literature.
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These algorithmic overviews are intended to provide the reader a context in
which to view the complexity results presented later in this dissertation, so only a
concise description of the algorithm’s distinguishing characteristics is warranted.
Please see the cited references for complete derivations. When an algorithm serves
as an underpinning for this dissertation’s results, a rigorous development of that

algorithm is included at the point which it is used.

The first polynomial algorithms for constrained optimization were developed
for linear programming. The first, in Khachian(1979) and the second in
Karmarkar(1984) are both covered in Bazaara. Jarvis, and Sherali(1990), from
which this discussion is drawn. Khachian's algorithm iteratively generates a series |
of shrinking ellipsoids. each of which contains the set of points solving the linear |
programming problem defined as minimize {cTx | Ax > b, x > 0}. Khachian
showed that the algorithm will terminate with a solution after a number of
iterations bounded by a polynomial of problem size, and if that bound is exceeded
no solution exists. The computational complexity bound of Khachian's algorithm
i1s Of(n + m)GL], where the matrix A is m xn and L is specified measure of the
input length of the problem. Unfortunately, the actual computational performance
of Khachian’s algorithm is close to its upper bound, while the simplex method
generally achieves a complexity bound of O(m3n) in practice. Thus, Khachian’s
method failed in application when compared to the existing simplex method.
However, the importance of Khachian’s work should not be underestimated. Like
the running of the first four minute mile or the breaking of the sound barrier, it
showed that a feat of previously unknown feasibility could be done. This resulted

in a resurgence of effort, and ultimately the ‘“‘barrier” of polynomiality was broken
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regularly.

While Khachian broke the barrier of polynomiality, Karmarkar introduced the
first polynomial linear programming algorithm which also competed favorably in
practice with the simplex method. Karmarkar’s algorithm addresses a particular
form of linear programming problem: minimize {c*x | Ax =0, eTx =1, x >0}
where A is m X n, A is of rank m, n > 2, data are integer, ¢ is the vector of ones,
and two fairly restrictive assumptions hold. The first assumption is that an initial
point x0 = (1/n, 1/n, ..., 1/n) is feasible and the second is that the optimal
objective function value is zero. (There are transformations and additional
variables which allow standard linear programming problems to conform to these
requirements.) At the heart of Karmarkar’s algorithm i1s the following projective
transformation, shown here at the start of the (k + l)th iteration with a feasible
x* > 0:

xi/xi57

V== k,iG{l,Z, .y I}
Pl

The algorithm takes a step in this transformed space to minimize the (transformed)
objective function over the intersection of the simplex constraint eTy = 1 and a ball
centered at yy = (1/n, 1/n, ..., 1/n) with a radius strictly less than 1/n(n — 1), the
distance from y0 to a facet of the simplex constraint. This minimization is easily
accomplished by projecting the negative gradient of the transformed objective
function onto the null space of the transformed feasible region and moving along it

to the boundary of the constraining ball. This is the new feasible point, ready for
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the next iteration. After O(nL) iterations and computational effort of O(n3'5L) the
algorithm achieves an interior point solution x such that ¢Tx <2~ L at which
point another polynomial algorithm may be used to find the optimal vertex. (Such
an algorithm will be described later in this section.) This bound competes
favorably with the O(m3n) practical bound of the simplex method. Of particular
interest to logarithmic barrier function research is the potential function used by
Karmarkar to show quantifiable progress at each iteration toward optimality. That

function,

nln(cx) — 3 ln(xj).
=

J

is a type of logarithmic barrier function for linear programming, and is also a
component of the method of analytic centers for linear programming. This aspect
of Karmarkar’s algorithm spawned renewed interest in interior point methods that

ultimately lead to the complexity results upon which this research is based.

Recent analysis by Powell(1991) of Karmarkar’s algorithm with the potential
function shown above has established that the exponent of n in the iteration bound
can be no less than one. This is shown by constructing a worst-case linear program
in E3 with n inequality constraints, which transforms to n + 3 variables for the
equality constrained problem. Karmarkar’s algorithm is shown to terminate in

n/20 — 1 iterations for n > 120 and a multiple of 20.

A well-known property of linear programming is that if a linear program has a

solution, it has a vertex (or corner-point) solution. When applying any interior
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point method to linear programming, it is desirable to find an optimal vertex from
the nearby interior point at which the algorithm terminated. The termination
criterion is that the resulting interior point X satisfies ¢TX —z* < 27 F, 2* being the
optimal value, and is motivated by the fact that for any non-optimal vertex x,
Tx—2*¢ (0,2~ L). Since polynomiality is the stated goal of the algorithms
covered, the algorithm for finding a vertex solution should also be polynomial so as
not to negate the importance of that property for the linear programming
algorithm. Such an algorithm is found in Bazaara, Jarvis, and Sherali(1990) and is
called a purification algorithm. It is based on concepts first set forth in Charnes
and Kortanek(1965). Gonzaga(1992) also discusses the basic idea of a purification
algorithm: *... each iteration of a purification algorithm reduces one variable to
zero along a descent direction for cost, doing pivoting like the simplex method. No
more than n iterations are needed, with O(nQ) computations per iteration
(Gonzaga, 1992).” Gonzaga's explanation is based on an equality-constrained
linear program in E", and it is clear that the overall complexity of this technique is
of O(n3). In practice, getting to within 2~ L of the optimal value may be very
time-consuming and therefore expensive. A practical approach, without such a
stringent accuracy requirement but with no explicit consideration of polynomiality,

is found in Mehrotra(1990).

Another established linear programming interior point algorithm is known as
affine scaling. Gonzaga(1992) introduces affine scaling as a type of scaled-steepest

descent algorithm. The nomenclature comes from the scaling of the problem at

each iteration--the scaled space is achieved by dividing x; by the current point xf ,

k

1€ {1, 2, ..., n}. This maps the current point x* to a vector of ones. The scaled
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objective function negative gradient, projected onto the nullspace of the scaled
constraint matrix, is the descent direction. A variety of step length procedures
have been employed along the affine scaling search direction. A verv simple
procedure uses a constant step length of one. Another moves a fixed percentage,
say 95 percent, of the distance to the nearest axis to maintain strict interiority.
Because of the scaling of the feasible region, affine scaling produces an ellipsoidal
confidence region in the original space, as opposed to the spherical confidence
region for Cauchy's steepest descent algorithm. This allows better progress toward
optimality by avoiding the *‘zig-zag” prevalent in unscaled steepest descent. See

Gonzaga(1992) for a more thorough coverage.

Affine scaling for linear programming also exists in a primal-dual form. An
example of this is found in Huang and Kortanek(1991). In this form. the search
direction derives from a potential function which incorporates the primal variables

(x) and the dual slacks (s). The potential function is

d(x,3) = p In(xTs) - _illn(xisi)

where p = n +vii. The authors construct primal and dual search directions which
reduce the potential function subject to primal and dual feasibility and an
ellipsoidal constraint on the scaled magnitude of the search directions. The
resulting algorithm simultaneously takes steps in primal and dual space at each

iteration to solve a linear program with computational complexity of O(va L).
The algorithms discussed so far have been for linear programming. The
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algorithm presented in this paper is for a more general class of problem with
concave quadratic constraints and a convex quadratic objective function.
Polynomial algorithms for solving problems more general than linear programming
problems exist and are well documented, so the remainder of this chapter will
present several such examples. Of course, each will apply to the more restrictive

linear program as well.

A number of algorithms for solving both quadratic programs and quadratically
constrained convex programs employ the method of analytic centers. General
theory concerning analytic centers was developed in Huard(1967). and an example
of this solution technique applied to quadratic programming is found in Mehrotra

and Sun(1990). Given a general constrained optimization problem in E™,

min f(x)

st.x€ER={g;(x)>0,i=1,2, ..., m},

for some z € E! let the region R, = {x € E" | f(x) <z, x € R} be bounded with a

non-empty interior. The analytic center of R, is the point in R, which solves
r m
max (2~ 1(0)"f] o).
1=

for some positive integer r. An equivalent formulation was developed in Fiacco and

McCormick(1968, 1990) and is related to the logarithmic barrier function:

min — rln(z — f(x)) —igzn( 4;(x))-
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Mehrotra and Sun(1990) let r = m. a common practice. With this definition in
mind, their method of analytic centers is straightforward. Let f(x) be quadratic
and convex, and let each g,(x) be linear affine. We are given z¥ such that R 0is
bounded with a non-empty interior. and x” a close approximation to the analytic
center of R . The (k + 1)t iteration begins with zF and x* such that x* a close
approximat'ion to the analytic center of R ;. The algorithm decrements ¥ to 2k +1

and finds x* *1

. a close approximation to the analytic center of R ;41 Thekey
behind the algorithm of Mehrotra and Sun is that by decrementing z* a small
amount, the algorithm requires only one partial Newton step (a step size less than
one) to arrive at an approximate analytic center of Rzk +1- The resulting

computational complexity (including the Hessian inversion for the Newton step) is

O(n3vm L).

Another algorithm using analytic centers has a direct bearing on the algorithm
developed later in this paper. Jarre(1991) presents a method of analytic centers to
solve a convex program with quadratic constraints and a quadratic objective
function. precisely the same problem solved by this dissertation’s primal-dual
algorithm. The iteration bound is O(Nm |In(€)|) for a tolerance e, also the same as
will be shown for our primal-dual algorithm. The interpretation of € is that the
algorithm terminates with an interior point x such that the difference between the
objective function evaluated at x and at the true constrained minimizer is at most
e. This is known as an e-optimal solution. Although Jarre(1991) uses a different
formulation for the definition of the analytic center than does Mehrotra and

Sun(1990), the concept is the same. Given a small decrement of z*, the analysis
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shows that a single Newton step will arrive at a new approximate analytic center.
Jarre also briefly discusses the problem of finding the initial values of z¥ and x.
and shows that by adding an artificial variable and constraint the same polynomial
method of analytic centers can be used to find z% and x. See Chapter VIII for an
explanation and adaptation of this technique for meeting the initial condition

requirements of our primal-dual algorithm.

The emergence of the user-defined parameter € warrants some discussion.
Because it is user-defined, € is not related to problem size. A polynomial
complexity bound containing €. such as that of Jarre(1991) or that of our primal-
dual algorithm. may thus seem less satisfying than those for linear programming
which contain only problem size information. namely n, m, and L. The
requirement for € is a result of the more general quadratic objective function and
constraints. Assume a solution exists. With a nonlinear convex quadratic
objective function, an extreme point solution is not guaranteed; and even with a
linear objective function, thought an extreme point solution must exist. it will not
necessarily be at a ‘‘vertex’’. Indeed, the concept of a vertex may not apply in the
presence of nonlinear quadratic constraints. For example, the concave quadratic

2 _y2 >0 in E? generates a feasible region consisting of the

constraint g(x) =1 —x
boundary and interior of the unit sphere, which is compact but clearly has no
vertices. Thus, there is no way for some measure of problem size to indicate a
stopping point near an optimal vertex as L does for linear programming. Hence,
the use of a tolerance parameter €. QOue must take care, however, that the manner

in which € appears in the complexity bound does not compromise polynomiality.

As a reader of this dissertation pointed out, had a bound of O(Nm 2 [ tne ) resulted,
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substitution of 2~ ¥ for € as is done for linear programming would result in

| Ine | is a user-defined scalar. The scale of

exponential complexity even though 2
the problem also may complicate the selection of €. For an arbitrary € > 0 and
objective function f(x). suppose we can compute T such that |f(x,| < T for all
feasible x. Then with the simple transformation f(x) = (e/2M)f(x). minimizing
f(x) over the feasible region results in every feasible x being an e-optimal solution.
~o while the use of the tolerance ¢ is necessary for the result, readers should

recognize that polynomiality based partly on € does differ from polynomiality based

strictly . n problem size.

The research which provides the underpinnings to this dissertation concerns
the logarithmic barrier function and SUMT for solving both the convex
cuadratically constrained problem and the quadratic program. Significant research
i. the recent past has proven polynomiality for this solution technique for both of
thes~ problem classes. Two papers in particular are crucial to our results--they are
mentioned briefly here. and covered in detail later in subsequent chapters as they
apply. den Hertog, Roos, and Terlaky(1990) showed that the classic logarithmic
barrier method solve: the quadratically constrained problem to within a tolerance
of € in O(Nm |In(e)|) iteravions. The convergence and complexit: unalysis of den
Hertog, Roos, and Terlaky provides the basis for the initial complexity result for
our primal-dual algorith.n. and is presented in detail in Chapter IV.
Anstreicher(1990) anplicd the logarithmic barrier method to the quadratic
program. The convergence and complexity analysis differs substantially from den
Hertog, Roos, and Ter.aky(1990). and establishes an iteration bound of O(vm L).

Furthermore, Anstreicier shows that with the correct initialization and selection of
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parameters, the classic logarithmic barrier SUMT as implemented by Fiacco and
McCormick in the 1960s has polynomial complexity of O(vit L In(L)) for quadratic
programming. Anstreicher’s results are presented in Chapter VII, where they
establish that the primal-dual algorithm developed in this dissertation has an O(yfm
L) iteratior: bound when applied to a linear programming problem. (This

particular bound does not extend to quadratic programming.)

This chupter would be incomplete without citing two recent and extensive
s. .ey papers on interior point methods. The first, Gonzaga(1992), has already
been cited with respect to an affine scaling linear programming algorithm. It
contains a weal'h of information on primal. dual, and primal-dual interior point
methods for linear programming. The second 1s Wright(1992), which is an
excellent primer on the basic theory underlying interior point methods for linear
and nonlinear programming, with special emphasis on the logarithmic barrier
function. Wright includes a polynomial complexity proof for a linear programing
barrier function method that is somewhat similar to Anstreicher’s, as well as a
survey of primal and primal-dual methods and linear algebraic issues for interior

point method..

Fi .aily, in almost any reference concerning barrier functions in mathematical
programming, including those above, one will find citations for Fiacco and
McCormick(1968, 1990). Their classic text on nonlinear programming, first
published in 1968 and now reissued, remains a fundamental source for
understanding this field of research. Their efforts at the time were directed toward

nonlinear programming and did not involve computational complexity. but did lay
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the groundwork for much of what has followed in linear and nonlinear
programming. The startling and satisfying discovery by Anstreicher of the
polynomiality of their original 1960s-vintage SUMT for quadratic programming

indicates the enduring value of their research.
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CHAPTER III: THE PRIMAL-DUAL ALGORITHM

III.1 Problem Definition

We define a convex problem P:

min bTx
st gi(x) >0, iel={12,...,m}
x € E®

where b is a vector in E” and each g,(x) is a concave quadratic function for i € L.
Let R={x€E"|g;(x) > 0,i€l} and R*={x€E" | g/(x) > 0,i€l}. Let uc
assume R is bounded and R* is non-empty; and let us define the following

logarithmic barrier function on R*, for u € E! and strictly positive:

O(x,u) = E% - _fllﬂ(gi(x))-

The gradient and Hessian of this function are as follows:
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1L Vgl-(x)

R
Vo(xu) = b- Y
/ l-:]. gi(x)

Vgi(x)Vg,(x)"  Vigi(x)
gl-(x)2 9;(x)

V2®(x,u) = inj[

1=1
Note that ®(x,u) is convex in R* for fixed p > 0 and thus has a positive semi-

definite Hessian. This structure allows for the following lemmas:

Lemma IIL1: For an arbitrary z € E” and nonzero. and x € R*,

If R is bounded, then

2"V g (x)Vg,(x)Tz=0,1€1 (3.1)
and
2TV2g.(x) z=0,i€1 (3.2)

cannot both be true.

Proof: Suppose not. Then (3.1) and (3.2) both hold. Let i € I be arbitrary. That

(3.1) holds implies Vg;(x)Tz =0. Now let y = x + Az, A € El. Using x € R* and
(3.2) leads to

2
9i(y) = g%) + W0z + 5 2TV(x)z = g(x) > 0.

Since i was arbitrary, this holds for i € I, which implies y € R*. But ||y ||+ + oo as
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A =+ 00, so R* is unbounded. This contradiction shows the supposition to be false,

proving the lemma. ]

Lemma II1.2: If R is bounded, then V%(I’(x,u) is positive definite in R*.

Proof: Let z € E™ and nonzero be given.

2TV2®(x.u)z = 27

m (Vg.(x)Vg,(x)T 3 V2g.(x)
2;( 9x)? 3. )}z (3.3)

_m (z‘l‘v9i<x>v9i<x>Tz)+ i(ﬂ - v2g,-(x>>z)

2

Since g;(x) > 0, and Vg;(x)Vg,(x)T and ( — VQQi(X)) are positive semi-definite,
i €1, each term in each summation is non-negative. Then by Lemma IIL.1, at least

one term must be strictly positive, proving the lemma. [

The specification of a linear objective function in problem P is not restrictive. Any
constrained optimization problem with a general objective function r(x) to be
minimized can be transformed into a constrained optimization problem with a
linear objective function by defining another variable z, adding the constraint

z —r(x) > 0, and minimizing z subject to this and the original constraints. Thus,

given a problem

min f(x)

s.t. g;(x) >0,1€l
x € E?
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where each g, is a concave quadratic and f is a non-linear convex quadratic
function, one may convert it to the form of problem P by introducing an additional

variable z € E! and using the transformation above to achieve

P, minz
s.t. g (x) = 0,i€l
z-f(x) >0

xe€ E" z e EL

This is an equivalent problem but with a linear objective function and concave
quadratic constraints. Note the implication that a convex quadratic program (QP)

is therefore a special case of P.

This transformation does not compromise the e-optimality criterion mentioned
in section I1.2 and in Jarre(1991), as we now show. Let (x*, z*) solve P,, and let
(xk, zk) be an e-optimal solution for P,. By construction, x* solves the original
problem and z* = f(x*). Since (xk, z¥) is feasible we have f(x¥) < z* and

f(x*) — zF < 0. Then using the definition of e-optimality,
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k

So x* is an e-optimal solution to the original problem.

Since P is a convex problem, there exist first order sufficiency conditions for a
global minimizer for P. We first define the Lagrangian for P using the notation

u = (ul’ Ug, «-os u,n):
m
L(x,u) = 8™x — ¥ u;g,(x)
=1

1=

Henceforth, we will let VL(x,u) denote V_L(x,u).

First Order Sufficicncy Conditions for P (see McCormick(1983) and Fiacco and

McCormick(1968. 1990))
3x €R, 0 > Osuchthat VL(X,G) = 0Oand T g(x) = 0,i€l
= X is a global minimizer for P

We also have the associated Wolfe dual. The assumption that R* is non-empty
satisfies Slater’s condition for convex programming, so (X, T ) solves the dual

problem D (see Fiacco and McCormick(1968, 1990)):

D: max L(x,u)=5"x — % u;9;(x)

1=

s.t. VL(xu) = b— 5 u;Vg,(x) =0, u;

l
1=

> 0,1€l
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Returning to the logarithmic barrier function as defined for problem P, consider the

problem

min ®(x,u)

s.t.x ¢ R*

for an arbitrary x4 > 0. Let x(u) be the minimizer of ®(x,x) in R*. By defining
u(p) = p/g9i(x(p) and u(p) = {uy(p), uplp), - . -, um(p)} we see that (x(p),
u(p)) is dual feasible. This dual feasibility allows the formulation of a lower bound
on the optimal value of the objective function bX (see Fiacco and
McCormick(1968. 1990), Theorem 22). This lower bound combined with the upper

bound given by bTx(u) (since x(u) is feasible) yields

A more extended development of duality in the minimization of ®(x, i) is found in
Fiacco and McCormick(1968, 1990), the text upon which much of the preceding

discussion is based. An important lemma relating to these upper and lower bounds
when minimizing ®(x, u) is contained in den Hertog, Roos, and Terlaky(1990), and

is presented here without proof.

Lemma JI1.3: For decreasing values of u > 0, the objective function b™x(u) is

strictly monotonically decreasing and the dual objective function bTx(x) — mpy is
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monotonically increasing.

Proof: Omitted. See den Hertog, Roos and Terlaky(1990), where the authors
prove the result for general smooth convex programs. The first part was first
proved in Fiacco and McCormick(1968, 1990) for the more general convex

programming problem. [J

I1I1.2 The Primal-Dual Algorithm
This research concerns convergence and computational complexity of an
algorithm that, applied to problem P, simultaneously finds the minimizer X and
the associated vector of dual variables (i.e. KKT multipliers) . The following

motivation for the algorithm is from McCormick(1991b).

Primal-Dual Algorithm: Solve the equations

VLi(x,u) =0 (3.4)
u;9;(x) = pkliel (3.5)

with x € R* and u; > 0, i €1, for a positive sequence {u*} 10. Satisfaction of (3.5)
is known as perturbed complementary slackness. For a given value of uk > 0, let
[x(pk), u(p*)] denote a point satisfying the above equations with x(uf) € R* and

u-(pk) > 0,i€l. Then [x(,uk), u(uk)] is dual feasible, and

1
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bTx(uF) 2 bTX > bTx(ef) — 3 u(uh)gi(x(uh)) = bTx(ub) — mpt.
1=1

The point x(yk) is also a minimizer of @(x,pk); this can be seen by substituting
11 gi(x(*)) for uy(uF) in VL(x(4¥), u(g*)) = 0, which results in V®(x(u*),uF) =
0. @ inherits the convexity of problem P, so stationarity and feasibility are

sufficient for a global minimizer.

In practice, these equations would not be solved exactly, but approximately. The
basic idea of the algorithm is to use Newton’s method to solve (3.4) and (3.5) with
a line search to determine step size and retain feasibility. We assume that at the

start of the k!® Newton iteration we have ,uk > 0 and (x,u) such that x € R* and

u; > 0.1€l. Let U =diag(u;), G = diag(g,(x)), and Vg be the n x m matrix

whose it? column is Vg,(x). For simpler notation, let y denote u*. The Jacobian

of (3.4) and (3.5) 1s

Using the bordered inverse formula in McCormick(1983), we have

1 M-l M-lygGg-!
7w = G-y -t D

where D = G~ ! -~ G~ lUVg™ - IVg G~ 1 and M is defined as follows:
M = V2L(x,u) + Vg UG~ 1vgT
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_—

_ 2 & , u; (T
= V<L(xu) + iglVgl(x)hgi(x)Vgl(x)

for x € R* and u; > 0.1€l. Some manipulation reveals

[vg,0Vg)" V(%)

M = 3 191 G 8 (3.6
z;u ? (X)l g:(x)? 9:(x) ‘ )

The following lemma results from the structure of M and its similarity to the

Hessian of ®(x,pu).

Lemma [1L.4: R is bounded = M is positive definite in R*. for u;>0,iel

Proof: Let z € E” and nonzero be given.

T, _ 1| O Vgi(x)Vgi(x)T  Vg;(x)
z’Mz =2 l: igluigi(x)[ gi(x)2 7, H z

Since u; > 0, g;(x) > 0, and Vg,(x)Vg;(x)T and (— V2gi(x)) are positive semi-

definite, i € I, each term in each summation is non-negative. Then by Lemma

IIL.1, at least one term must be strictly positive, proving the lemma. ]

Note that for positive definite M and p > 0,

35




and 1s positive definite.

We have shown that for bounded R, M ~ I exists. If x € R* then G ~ ! exists. So
given the boundedness of R and interiority of x. J ~ 1(x,u) exists. Note that the
diagonal nature of G and U implies that the effort in computing J ~ !(x.u) is of the
same order as in computing M ~ I that is, O(n3).

This explicit expression for the Jacobian inverse allows the formulation of the

Newton step with step size t. Here, e is a vector of ones.

x)] [x] M-l M~19g 6! ][ VL) |
u(t) a uJ —G"IUVgTM_1 D UGe — e




) T Va0

UG~ 'Ugt~ l{bT - ;t'§1Vgi(x)/gi(x)} + G ley —u
1=

Now let p = —M_l{b"’— ,u_g;Vgi(x)/gi(x)} = —(%AI)~1V¢(X,/L).
1=

The Newton step becomes

x(t) |} x [ p .
u(t) | | u +L—UG_1Vg’rp+G_ley—u

We next explore the implications of the Primal-Dual Newton direction in the

primal variables.
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CHAPTER IV: PROPERTIES OF THE PRIMAL-DUAL NEWTON
DIRECTION IN THE PR.MAL VARIABLES

IV.1 Developing a Primal Vanable Algorithm

Let H denote V2®(x.). We have noted the strong connection between H and My u

for fixed ¢ > 0. namely.

Indeed. if n,g,(x) — ¢ = Oforalli€l, then M/p = H.

1,9,/ x)

1 - T

Now let w = max
1€1

!. Then for any d € E™.

=1}

d{ﬂ . ﬂ%(xwfgxxﬁ V)

g,-(x)z 9:(x)

n

}d < dTiaf ¢
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which 1mplies

(1-w)d™Md < d"IMd < (1+w)dTH d, (4.1)
and if w < 1,
T=3ldly < Idly ), < TFoldly (4.2)

where for any positive definite n xn matrix A, [dil, = (dTA d)'/2 defines the
matrix norm of d with respect to A. We will now adapt the results of den Hertog,
Roos, and Terlaky(1990) to develop a primal variable algorithm using the primal
variable Newton direction p(x,u.pu) = —(M/u)™ IVQ(x,u) generated by the Primal-
Dual Algorithm, and w sufficiently small to obtain convergence and polynomial
complexity. We will use p as an abbreviation for p(x,u,u) when clarity does not

suffer because of it.

A Primal Variable Algorithm: This algorithm loosely follows the SUMT central

path. It gets close to the central path by doing linesearches seeking to reduce
d(x,u) along successive Newton directions. When used in this manner in the
course of a line search, ®(x,u) is called a merit function. The Newton direction p is

the one generated in the primal variables by the Primal-Dual Algorithm. We
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assume

u;9;(x)
I

< L

1- 62

w = max

1€l

at all times. This assumption is not blithely made--it is quite restrictive, and the
reader may reasonably wonder whether it could actually be satisfied without
sacrificing polynomiality. In fact, Chapter VI of this dissertation presents a

method for doing so.

It will be shown that this bound on w keeps M/ sufficiently close to H to
allow proofs of convergence and polynomial complexity. The algorithm proceeds
by doing successive linesearches until 2wl +w < ]]p”M/# <r= —é—m .a
tolerance. The positive lower bound on this tolerance is quite small because of the
size of w, so if it is approached during the linesearch the upper bound will be easily
met, and the linesearch may be terminated. (For w < 1_16’ the upper bound is
strictly greater than the lower bound.) When this tolerance is obtained, we reduce
ptofi =(1—8)ufor some 8 € (0,1). The algorithm ultimately achieves an e-
optimal solution value for P. A point x is said to be e-optimal if, given the true

constrained minimum z*, 8Tx — z* <e.

Input
Reduction factor 6 € (0,1)
_1 _ wg;(x)| _ 1
Tolerance 7 = 8—\]1 —w. Assume w =max_ |1 - < z5 always.
T is an accuracy parameter.
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x0 e R* is given, as 1s ul < 1/7, and u? > 0.1 € Isuch that ”p(xo,uo,uo)“M/# <r
begin

while 4 > 7 /2m do
begin outer iteration
while IPlag/n < 7 do
begin inner iteration
A = arg min  {®(x,u) s.t. (x + Ap) € R*,

0<A<l
1Plyr /2 2041 + w0}

X = x+ Xp
end inner iteration
p=(1-0u
end outer iteration

end

IV.2 Convergence and Complexity of the Primal Variable Algorithm

Let qu(x +d, p) = ®(x,u) + VO(x,u)Td + % dTH d, the quadratic approximation of

O(x +d, u) at x.

Let Gz(x +d, u) = ®(x,n) + V(x,)"d + 3 dTM d
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= ®(x,u) + VO(x,u)"d + § d"(H-E) d

=q(x+d. p) -1 dTEd

4L u.g; (x (x)T 2, (x
where E = 2(1_ 1gZ(X)){Vgl( )Vg,(x) _V 9;(x)

=1 : g:(x)* 9:(x)

From the relationship between H and %M and the definition of w we have
ar(x+d. p)—Fwd™Hd < Go(x+dop) < qulx+dop)+1iwdTHd

The proof of convergence and polynomial complexity for the primal variable
algorithm is developed through a series of five lemmas. The synopsis below is
based on one in den Hertog, Roos, and Terlaky(1990), and may aid the reader in

following the aevelopment of the convergence and complexity proof:

(1) Lemma IV.1 gives an upper bound on the absolute difference between

®(x +d,u) and qg(x +d,pu).

(2) Lemma IV.2 shows that if a proximity critetion based on the Primal-Dual
Newton step in the primal variables is met at a point x, then x lies close to the
minimizer of ®(-,u). ‘‘Closeness” is measured using the norm with respect to the

Hessian of ®(x,u).
(3) Lemma IV.3 establishes that when the proximity criterion from Lemma
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IV.2 is not met. one obtains a guaranteed reduction in ®( - 1) when doing a line

search along the Primal-Dual Newton step in the primal variables.

(4) Lemma IV.4 gives an upper bound on the difference between ®(x,u) and
®(x(p),p), where x(u) is the minimizer of ®( -,u), when the proximity criterion

from Lemma IV.2 is met.

(5) Lemma IV.5 gives a bound on the absolute difference between the values
obtained by evaluating the objective function of P at x and x(u), when the

proximity criterion from Lemma IV.2 is met.

With our previous assumption of w < 317 throughout all iterations, we can
prove these lemmas analogous to those in den Hertog, Roos, and Terlaky(1990).
The proofs are similar to those in the referenced work, adapted to deal with the use

of M/u instead of H in the quadratic approximation of ®(x +d, p).

Lemma [V.1: Let w < Eli , ”d”M/u <1 —w for an arbitrary d € E", and let

x € R*, u > 0 be given.
Then x +d € R* and

) | Idlf,
|B(x +d. p) —Ge(x+d, u)| < 3 ‘*’"d‘PH*é’(l——uTuH")

Proof: ”d”M/;t <y1=w =ld}y <1. Using the Taylor expansion of ®(x.u), we

have
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o0
P(x+d, p) =qrx+d g+ 2 t;

1=

where t; is the i" term of the Taylor expansion. In den Hertog, Roos. and

Terlaky(1990) it is proved that for ldlly <1.x+d € R* and ‘f t; converges such

1=3
that
o ldig
bl
= l‘— 301 —Tdl,)
~ 1 4T x
Thus, O(x +d. p) =qr(x+d, p)+5d°E d+.23ti
1=
~ 1 4T xQ
B(x+d, 1) —qix+d p) < §d wHd+ Yt
1=
|®(x +d, p) — Gz(x +d, p)] < ldld!{%{+—”—d"3H——, proving the
’ z PR =2 3(1—ldlg)
lemma. (]

Lemma [V.2: If w < B%and 2wl +w < ”p”M/yS—Jé 1 —w, then ”x—x(p)l]H< %

Py

Proof: ||p||M/#<—\|é l—w = ||P||H§%' Let h be arbitrary such that ﬂhIlH:%

1P -
lp+hly < gy +ibly = 3p1p < & (4.3)
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Consider values of ® evaluated on the ellipsoid {x+p+h | [hiy = % iplg}. From

Lemma IV.1,

h
P(x+p+hop) 2 Gelx+p+hop) - %w!lp+hl|%1—3(1”3;)7!%@4-4)

Since x + p minimizes @z, V3z(x+p, ) =0 =
Go(x +p +h p) = Tulx +p. u) + Vau(x +p. #)Th + IhTV2G,(x + p, u)h

= (x+p, )+ hT(FM) h (4.5)

Substituting (4.5) and (4.3) into (4.4) yields

Eabdl

~ 9

Bixptho) 2 Gletpw)+ ETGM) B - § o i - STTT
3

> Golx+p, p) + S (1 -wlbly — Bypi —Eyp i
> Glx+p 0+ F -3 ipi — wBipih - ik

- o~ 9 34 2 12
> Glx+p, 0)+ (3 -Hw) vy —Bipiy

w < 61—2 = 9 — 34w > 0, which with |pjy < é implies

®(x+p+h, p) > ulx+p, )+ (9 -3 ply —Byppy
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2 qr(x+p.p)+ (i—% —34w)l|pll§1
From Lemma IV.1 we also have

~ p
S(x+p, p) < Qulx+p,u) + %w”p”%{-*_rl"_—%m

Since 2wyl +w < 1Plagyp = @ S%”p”]{ , we have

1P Iy
3(1-3)

B(x+p. p) < Gelx+p.p) + Lo+
< Qolx+pop) + Bipiy

andsowgs% = g—g < —1% — 3w = ®(x+p,p) < B(x+p+hop)

—

Thus the center of the ellipsuid has a value of @ less than any point on the

boundary. By applying the strict convexity of ® we see that the minimizer x(u)

must lie in the interior of the ellipsoid. proving the lemma. ]

The requirement that 2w\l +w < 1P lag/ does not significantly complicate the

algorithm since w is fairly small. The continuity of the gradient and Hessian imply

that if in the course of the line search this condition fails ()pj,, Ju is too small), one

can ‘“‘back out” along the Newton direction to find a point that does satisfy the

conditions of the lemma.
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Lemma IV.3: Hw < 6—12— and 1P liar >% 1 —w, the decrease A in ® after a
linesearch along p using ® as a merit function is
1
AN, 48 -
Proof: Let A be a step length such that | Ap|ly < 1and 0 <A < 1. From Lemma

IV.1 and the definition of G (x + Ap, u),

oo ) € o (x ot Lo o Al
D0 +Ap, ) S Al Ap. ) + 3 NullPlly + 577y 5
; . . Ayp
= O(x. p) +AVE(x)p + $ABTIMp + %A2w1|plli){+y1_*_”/\_lllgl_llzf—)
= B(x, p) = O(x+Ap, u) > —AVE(x)Tp — L ApTIM p
Mie
M2 — — P
2 P 5T Np )
Now
~ Vo(x)Tp = V&(x)T(1M) ~ 1V(x)
= Va(x)"(:M) T EM)(EM) T IVE(x) =[Py,
SO
2 1412, .2
O(x, p) = R(x +Ap, 1) 2 NP/ — 3 AUPIR
Mip i}
- Pl — g e (4.6)

—Aplg)
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> =L —wyp ~ Wypry - ’\3HPH:}1 £
2 ) <Pl 2 APl 3(1_)\"p”H‘) (from (4-2)) (4'7)

; : Mip
2 (A= WPl = APl + PPl — NPl ~ 3 ey i *n:ny)

. 5 9 A3 )
O Y L )

1

~—=— . Then with some manipulation (4.8) becomes
ey

Now let A =
1 1

O(x, 1) = B(x+Ap, #) 2 LS5¥%p1y — 5 — om

We also have w < 6—15 and ||p|lg > 8\J=111;i) which together imply

B(x, u) — B(x+Ap, 1) > 1ig-
Thus the lemma i1s proved. [

Corollary IV.3: Ifw < 615 and 1P lag /p < %\Il — w, then ®(x, p) - ®(x+p, p) >0

Proof: From (4.8) and A =1 we have
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3
®(x, u) = x+p. 1) 2 3IplG —qlptli’f—“s(l_lﬂlilg||y)
1 2
>(1_ o _glPly
>(L-2)ip iy 0

>(L—w-g)ipfly 20.0

The next lemma may be of general interest, since it allows one to bound the

difference between the current value of ®(x,u) and the minimum value ®(x(u), u).

Lemma IV.4: If w < gyand 2{T+ W <|plyy/, < VT = . then

B(x, p) — B(x(1). 1) < 4Py

Proof: Let d = x(u) —x. From Lemma IV.1 and the definition of q,

d
B(x(), 1) 2 Gulx+d, ) - %“"'d'ﬁf“s(ln-—llu%m)
o 1 Ik
= ®(x, u) +VO(x, p)Td + 5d"Md - ?“’”dﬁl's(l—ndll,,)
T1 1 41l 1 ”d":;{
= &x,p) —p'pMd + 5d M d ~ id'd'%‘m

From the Cauchy-Schwartz inequality we obtain pT},M d< 1P Ips ”d"M/y' Thus

Id IR
B(x(w), ) 2 B0 1) ~ 1Pl Ny +31d0,, — gl dly — s

|
2(x, 4) = B(x(p), 1) < [Plygy,ldlyy/, — S1dRy,, + Sddlfy +____3(1"_H%"H)
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: : I
, — s 2 LAdpR, + ——H
where (4.9) follows from (4.2). From the definition of d and Lemma IV.2 we
obtain
- d
44 10)

B, 1) = @x(u), 1) < G+ ety - gldly + ddly + 5

Again applying Lemma IV.2. the fact that — % +w<0,and |p|y < %, we have

(4.11): (4.12) results from 1 + w < %’

5 oGP
O(x, p) — O(x(n), #) < §(1+W)“p“;1 + 3 11
24(1g)
< 3(+wiply + 10k (4.11)
< 4|pl (4.12)
This proves the lemma. [J
Corollary IV.3 further shows
B(x +p, ) — B(x(k), 1) < Bx, p) — B(x(p), 1) < 4 P Yy- (4.13)
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Lemma IV.5: If w < & and 2wl +w < ||p||M/# < —é— V1 =w , then

IbTx —bTx(p)| < § p V.

Proof: (See den Hertog, Roos. and Terlaky(1990).) At x(p). VO(x(p), p) = 0.

Taking the inner product of V®(x(y). p) with (x — x(u)) we have

bt = () g V) (x = xla)

Z ) ¥y R

Now g, is concave = g;(x) - g;(x(1) < Ve (x(n))T(x = x(n))

bix = bTx(p)  ELg;ix) — gi{x(p))
= - : >0 4.14
L ) )

We apply Lemma IV.4 to obtain

bTx — bt

B(x, ) - Blx(p), 1) = g ) in;l In(g,(x)) — Inlg,(x(u)

=1
< 4 ||p||%{ < 1_16 (4.15)
Ty —
Define v; = g;(x)/g,(x(1)) and w = E—(—iﬂ—\:(m Then from (4.14) and (4.15)
m
w— }:(vl—l):w——( zvi)+mzo
1=1 i=1
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,Z,f v; —m < w (4.16)

=1

403
w < —1%+Z In(v;) (4.17)

=1
and combining (4.16) and (4.17) we obtain

m 1 m
__11\1. —m < < e+ 3 Inlyy). (4.18)

1= =1

The geometric-arithmetic mean mequality implies

m 1 1 m
( “i) /m< Moy
vi=l =1

] ]

=

7,

-

v.. We can then obtein

Let T _——_;1,—,. ;

2

1

1

- 1 om ‘ noA\l/m 1 —
mv —m<w< E—Hni];[lvi = E+mln{(i}:}1%> / }SI—G‘*‘ml”(l )

5

= T -1<d S%ﬂ;-l—ln(ﬁ) (4.19)

3l

J—é—(ln(?)—ﬁ):%—;—-l <0 forv Zl,and—,i}——l >0for0<T <1,50Ir(T)—7

is monotonically decreasing for © > 1 and moaotonically increasing for 0 <7 < 1.

= 1
Suppose T Zl+2\fﬁi
1 )T 1 1\ 1
= . AR = 16m+ln(1+2m) (”Nm)“'
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The third order Taylor expansion of ln(l + Z_\Il—ﬁ) from 1 1s

1Y\ 1 1 1 : [ 1
ln(1+2\rrﬁ)_2m 8m+24a3m3/2 for bomeaetl, l+m}

The last term i1s maximized by a = 1. so

1 T)—T 0 S S 1 1 _
om T -T +1 S grtsm—gm a2 N
1 1
.+.
m>1= 1_61§+ In(t)~7 +1 <0 which contradicts (4.19).
~ T 1@ - . =T 1 - _ 1
So the supposition is false, and T <1+ PNk Now suppose 0 <T < 1 N

We have shown that

In(v ) -7 is monotonically increasing in this region. By similarly manipulating the

third order Taylor

expansion of ln<1 - f\}?ﬁ) we again can show —lﬁl—m +In(v ) -7 41 < 0. producing

the same

contradiction. Thus I — 21 < T <14 2\j_l7n—‘ which leads to the following:

2ym

(1—%)—1§% = ~hm <w
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w oo 1 e 1 1 1 1.1 1
m < g tn@) s 16m+1"<1+2\rrﬁ s Tom 55372 T 2w = 2w

= wS%\m—l = jwl = %(bT(x—x(u))> < %m
= ‘b'r(x - x(;z))\ < %;Nﬁ . which proves the lemma.

Convergence and Complexity

Theorem IV.1: The algorithm requires at most K = O(—é—ln(—r?—)) outer iterations to

arrive at a solution within aun € of the optimal solution value for P.

Proof: /tk =(l- H)kpo. From duality, we have bTx(;tk) —-25 < ,ukm. With

Lemma [V.5, this gives us

bTxk — ,* = bTxk - bTX(,Uk) + bTx(#k) -z

< |pTxk - bTx(,uk)’+ bTx(yk) —2*
< %ykﬁﬁ +uFm = u"(%\xﬁ + m)

So we need a value of K such that (1 — H)kpo(%ﬁ + m) <e. Taking logarithms, we

obtain

— In(e) + In v + m) + In(u?)
—In(1 -6)

K >
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We have assumed x0 < 1/e. and know § < — In(1 -06) for 0 <6 < 1. This implies

— 2In(e) + (n(2m) S *ln(6)+ln(%~ﬁﬁ+m>+ln(y0)
¢ - —In(1-6)

Therefore K Zé( —2ln(e) + In(m) + In(2)) satisfies this inequality, proving

K = O(%ln(%)). 0

Theorem IV.2: The total number of inner iterations, say N. during an arbitrary

outer iteration satisfies
Né < 1 +1~—ﬁ—0(9m + i) , where § = Tzll_S is from Lemma IV.3.

Proof: Let 7 be the value of the parameter for the current iteration. and u the
value for the previous iteration. Recall 7 = (1 —8)u. We denote the sequence of
points generated by line searches during this iteration as xO, x!, xQ, LoxY. xVis

the value of x at the beginning of this outer iteration. From Lemma IV.3,

d(xV, 7)< ®(x%. )~ Ns.

= bTx n bTx m b x
Also, ®(x, = - In(g;(x)) =42 - ln(g;(x)) + =
= N6 < &(x0, 1) - d(xV, u) - %

7]




e

< ®(xY, ) —d(xN. 4) + —g—(bTxO —pTN)y

Because x¥ is almost centered with respect to u, we have ®(x?. ) — b(x(p), p) <1.
= B(x". ) = B(x. p) = B0, ) — B(x(p), 1) + B(x(p). ) — B(x, p)

< 14+ B(x(). 1) — B(xY, p)

<1
= N6 < 1+ —g—(b‘l‘x" —5TxY) (4.20)

Since xV is nearly centered for 4 and <N is nearly centered for 7 , Lemma IV.5

implies
[bT(" —x())] < Juvrm (421)
[TV —x(7 )| < g, (4.22)
From Lemma II1.3, 0 < Tx(p) —Tx(Z ) and 6Tx(p) —mp < bTx(7 ) — mz .
= 0 < 0'x(p)=b"x(7) < mlu—n). (4.23)

Combining (4.21), (4.22), and (4.23, we get




pTx0 — pTxN = pTx0 - bTx{p) + 0 x(p) = b x(m ) +bTx(m ) — bTxN

A

BN+ m(p — 70 ) + N = o ¥+ (1 — (1~ 6)) + 5(1 ~ )
< p(¥m + 6m)

Substituting in (4.20) we thus obtain
NS < 1+ —_g-(b'fxo —bTxY) <1+ pLo(m + fm). O

Combining Theorems IV.1 and IV.2. the total number of inner iterations is
Y14+ Lo(vm + 6m)) 0<%ln(%)) = Y34 (v + 6m) ) Ofin(12)),

Furthermore, the order of § has a key role in determining the bound on the number
of iterations.
6 = O(—\ll_:) = O(\an" .ln(e)|) iterations

m

6=0(1) = O(m |ln(e)|) iterations

37




Since each iteration requires O(n?) computations (the Hessian is inverted), the

computational complexity is:

O(n3\lﬁi ‘ln(e){) for § = O(\Ilﬁ)
O(n®m [in(e)|) for 6 = O(1).

Consider the special case where all constraints are linear affine. (This implies P is
a linear program.) Then by letting € = 2~ L the purification algorithm for finding
an optimal vertex described in Chapter II and in Gonzaga(1992) may be used.
Since the complexity of the purification algorithm is the same as that of the

Hessian inversion. the overall complexity of the algorithm is not altered.
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CHAPTER V: THE PRIMAL-DUAL NEWTON DIRECTION IN THE DUAL
VARIABLES

V.1 Analysis of the Dual Variable Newton Direction

In the previous chapter we found that when the deviation from perturbed
complementary slackness is kept small, a primal variable algorithm using the
primal portion of the Primal-Dual Newton direction will converge to within an € of
the solution to problem P in polynomial time. It is therefore logical to consider
next the changes in the dual variables induced by a Primal-Dual Newtoa move.
Indeed, if the dual variables change in a manner which maintains the small
deviation from perturbed complementary slackness, the polynomality of the Primal
Variable Algorithm will also apply to the Primal-Dual Algorithm. In this chapter
we investigate the nature of the dual variable movement and how it affects
perturbed complementary slackness. It will be shown that the dual variable
Newton direction with a standard step size procedure does not guarantee
maintenance of a small deviation from perturbed complementary slackness in all

dual variables. However, further analysis yields a modification to the step size
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which does maintain this small deviation.

Recall the Primal-Dual Newton move:

NN
T u L—UG_IVng + G lep — u

wherep = — M~ lrb'r _ R Va. , = _(lm)-ly
p - - .“Z gz(x)/gz(x) - ﬂI\/I @(X,'u)
=1

Let i € [ be arbitrary. and u,(t) denote the new value of the associated dual

variable given step size t. Then we have

u{t) = u; + {—g—:z;.?)—vgz.(x)i‘p + gil(lx) - ul--]t
= u,(t) = ui<1 —g—i(lT)—Vgi(x)Ttp)—l—(g—il&—) - ui) t.

The first term of this expression shows how u,(t) is influenced by tp, the Newton

step in the primal

variables. (l — —L——Vgl-(x)Ttp) 1s a first order Taylor series approximation of

gz-(x)
g:(x)/ g;(x + tp).

g; is concave = 1/g; is convex; and since g;(x) >0 = g,(x)/g;(x + tp), a function
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of t, is convex.

9i(x) 1 T
= ——— > 1 -—=Vg(x)'t
gi{x+tp) = gi(x) 5i(x)tp
So multiplying u; by (1 - ﬁVgi(x)'rtp) attempts, using first order information,
?

to account for the

change in g; as x goes to x + tp. keeping u,g,(x) and u,(t)g,(x + tp) approximately
equal. However, the inequality above shows the approximation may underestimate

gl-(X)/gl-(x + tp). that 1s.

1 o o
ui(l_mv_qi(x)rtp)gi(x%-tp) < u;g4(x).

This underestimation may be observed by assuming a linear affine g;(x).

= g;(x +tp) = g;(x) + Vg;(x)Ttp. Substituting into the formula for u,(t)g;(x + tp),

ST R

g

= “igi(x)(l - Ei(lﬁVgi(x)TthI +sz—)Vgi(x)Ttp)

= uigx)( 1= ({0 e )

= uigi(x) = uigi(x)( ;{57 Voix)tp

i

Since u; > 0 and g;(x) > 0, the last term is always non-positive, and (assuming
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t > 0) equals zero only if Vg,(x)"p = 0. So for linear affine g;(x), the

underestimation occurrs whenever Vg;(x)Tp # 0.

More will be said later about how this underestimation could affect the
performance of the Primal-Dual Algorithm, but for now let us move on to the

second term of

u;(t) = ni(l —;t—(;Vgi(x)Ttp)—k(gi/{x) - ui) t.

To study the role of the term (_,u__ - u‘) t in achieving perturbed

g4(x) !

complementary slackness, we let p =0 = g,(x + tp) = g,(x).

1

t
= (0= 4 Jo =

= ui(t)g{x +tp) —p = (ui+<g ’(‘x) - ui)t>9,~(X)—ﬂ

= (1= t)(u;9;(x) — )

The second term seeks to decrease 'uigz-(x) - u, by a factor of (1 —t); t = 1 reduces
qu-gi(x) - pl to zero. But this is predicated on the first term adjusting the value of
u,(t) to account for the change in g;, keeping u,(t)g;(x +tp) = u;g;(x). Thus the

terms work together: the second term attacks the current deviation from perturbed

complementary slackness, and the first adjusts the value of u; such that
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u;(t)g;(x + tp) = u;9,(x) so as not to confound the effect of the second term.

V.2 The Effect of the Dual Newton Direction on Convergence

To study how the dual variable Newton step performs in reducing {uigi(x) —p |,
we use the value of the step length t introduced in the proof of Lemma IV.3,
t = 1/(9ply) Besides guaranteeing a reduction in ®(x. g}, this value of X has

other valuable properties:
t=1/(9ply) = ltply = § = tp"Hep = ;. (5.1)

The definition of H implies

, A MV (x)Vg,(x)T Vg,
tertp:tp{Z 2l ‘?z’(x) A1, tp = gr (5-2)

All the matrices in this summation in (3.2) are positive semi-definite, so for an

arbitrary i € I, we have

(Givote ) < & (53)

<43 (5.4)

63




<
|
ml,__
—
—
(&3]
(&
S

We are given that g,(x) is a concave quadratic function. Using the definition of

u,(t) and a 2 © Taylor series expansion of g;(x +tp),

) ~ ) tp"V2g;(x) tp
u;(t)g;(x +tp) — = (u;9,(x) /1)(1 —t (1 + WVgi(x)Ttp + k) ))

(t TV‘Z T2
p Vigx)tp /1 2 (1 , tp” V7g,(x) tp
) gty (g o)) (gi(x)vgz"‘)Ttp)(_—“Qg,-(x‘> )}

Now define w; =1 —Ei;q/i—(x—) = u;9,(x) — g = p( ~w;). (Note w; <1 always.) To

study the reduction in luigi(x) — 1 }, consider two cases:
Case 1: u;g,(x) — ¢ >0. This implies w; < 0. Using the inequalities in (5.3)

through (5.7) and dropping terms with the appropriate sign, we develope the

following inequalities.
u;(t)gi(x +tp) — > (w9,(x) — (1 = t(1+§)) + vy0,(x) — 15— &)
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2l =01 =)+ it = i) - i)
Iterations only occur when ||p|j;; > % sot=1/(9p|y) =t < % Thus.
u(t)g(x+tp) —p > pl — w'l-)<l —g—?)-& ;1( ~ %%8-)-% p( — ..ul-)( —ng—)

> /1“"1( 4153) - “(Tig"s)

—

which 1s clearly a negative lower bound. Now. does this value of t guarantee a

reduction in u;g;(x) — pu?
u(t)g(x +tp) —p < pl—w; )(1 - t(l %- 1—}55)) +u(1 - w’i)(ﬁlg,g)
<l = )1 =153 + tdss) + 1)
To be certain of a reduction in u,;g;(x) — p, we need to show
w4 —wi)<l —%%&t +——15—~)+,u(~1—§) < o —w;)
= ~wf ~ 153t + Taks) < a8

< —52 ort>0.048951. Soif

1 143
If0< —w; <55, weneed — 455"

52 163 + Ta58
IPlly > 2.27, setting t = 1/(9)p|y) may not give a reduction in u;g;(x) — g
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Case 20 w;g;(x) — p < 0. This implies w; > 0. Using the inequalities in (5.3)
through (3.7) and dropping terms with the appropriate sign. we develop the

following inequalitics.

ui(t‘)gi(x +1tp)—p < (uigl-(:\') - /l)(l - r(l +%))+ !xi(/i(x)(1.1158>

<pl = w1 =)+ 11 = )(1555)

—
=S

[
o 2

< ul —w‘l')<1 _Jg;ﬂt +-11—138_>+#(1-1—>

: s
As before. we know t < 08 Thus.

wtt)gx = tp) = < gl = w1 -8+ )+ ()
s /l(_“’l)(l_i(%)+/1<-l+bg) 5/‘(11158)

which is a quite small positive upper bound for reasonable values of 4. Now. does

this value of t guarantee a reduction in {1xigi{x) —~ !

nAt)gAx ~tp) —p =

To allow for a reduction in iu‘.‘/,(-‘(’ — pt|. we need to show

6,6




= : >(%.i~l>(0.014763)

A small value of w;. say 0 < w; < é implies t > 8 Under the structure of the
algorithm. this rules out t = 1/(9p |y ), a value of t necessary for the previous
convergence and complexity proofs.  Therefore in this case. if w; satisfies it’s upper
bound of 61'_2’ convergence and polyvnomial complexity are uncertain. This leads to

the content of the next chapter. where analysis vields a modification to the

algorithm which allows a certain quantifiable reduction in w.
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CHAPTER VI: MODIFYING THE PRIMAL-DUAL ALGORITHM

VL1 Modifying the Dual Variable Newton Direction and Step Size

The previous chapter showed the nature of the Primal-Dual Newton direction
in the dual variables, and the inherent bias and uncertainty in its effect on
reducing ’uigl-(x) - y, for each 1 € I. This chapter develops a modification to the
Newton step in the dual variables to remove this bias and uncertainty. We begin

with the simpler case of an arbitiary linear affine g;(x). so that

[ul<1 - 1 Vgl-(x)Ttp>+(—%— - u,-) t] (gi(x) + Vg,-(x)Ttp)——u.

A simple way to modify the dual Newton step would be to adjust the step size t
(computed in the manner of the Primal Variable Algorithm) using information at
hand. Let this adjustment take the form of a parameter r; multiplying the step

size t in u(t). Then the above equation becomes
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= (u;9;(x) = )(1 = 7;t) — (u;94(x) — N)(g-(lx)vgi(x)Ttp)Tit

B ujgi(x)( Tz~(gz,(1x)v-‘/i(x)Ttp)2 —(1- Ti)(——l—;vgi(X)TtP))

Nowlet 7, =7, = i IV = With this value we obtain
1+ g.x)t
g;(x) 9ix) tp

T_z'( ! Vg,-(X)Ttp)? -(1-7; )(g—i(lgvg,-(x)%p) =0

= {u;9,(x) — p)(1 —t).

Thus, multiplying t by 7; in the computation of the new value of u; decrcases
|uigi(x) - /tl by a factor of (1 —t) at each inner iteration. (Recall 0 <t <1.) This

has a powerful implication. Suppose the algorithm 1s at a point near the trajectory.
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that is. w{l + w < 1Pliag /0 < %\H—:, and u;g,(x) —pu = 0.
1€l Let g =(1—~0)p. Then ugy(x)~7 =u;g;(x) —p+0p=0pu,icl Ifeachy;
is lincar affinc and the algorithm uses the formula u;(7;t), after any given iteration
the value of u,g,(x) — s is the same for all i € I, and %M = H — wH. where
w =1 —u;g,(x)/p. 1 €. So within an arbitrary onter iteration, the initial common
value of u;g;(x) — p is reduced strictly monotonically at each inner iteration.
Furthermore, if any inner iteration returns a step size t = 1, then u;¢,(x) — p =0,
1 € [ at each subsequent inner iteration.

This result applies only to linear affine constraints, so the next logical step
would be to attempt a similar result for the more general concave quadratic
constraint. We begin with the general step size multiplier 7; used successfully

before.

u(7t)gi(x +tp) —p = [ul<1 - E]i_(lx_)vgi(x)'”"tp> +<#}a - ul-)rit:}

x (g,(x) + Vg;(x)tp + 3tp Vg (x)tp) —

V2,0
= (u;9;(x) = p)(1 = 7;t) = (u;g5(x) = u)(b-i—lﬁw,-(xmp - grpT—g-j—;;)"—)rp)nr (6.1)
, Vg, ,
_ul-gi(x)(ri(g.(lx)Vgi(x)rtp)Q——%tpT gzi)x)t —(1—7’,)(9_(1 )Vgi(;\')rtp))
(6.2)
1 zg rvzqz(x)* 1 . T
‘l”’"(z (“p 7,x) “p)<g,-( Vi) ”’)) ©3
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V2g(x)

gi(x)

The presence of %tpT tp in (6.2) not multiplied by 7;, coupled with the

possibility that Vg,(x)"p = 0 means that in general it may not be possible to zero

out (6.2) and (6.3) with the correct choice of 7,. But the components containing 7,

in (6.2) and (6.3) can be made to sum to zero, as follows:

Let 7, = l and the following equations obtain.

2
1 o T 1 TV 9;(x)
14+ ——Vag.(x)'tp +tp —F——t
g " iRyt oy

VQgi(x)tp)

- “igi("’( ey

= (;9,(x) — £)(1 = t) + u{3tpTVg,(x)tp )

The use of 7; has removed some of the uncertainty concerning the reduction of




|u;g;(x) — g}, but a negative bias remains: ui(%tp'rvzgi(x)tp> < 0. However. if we

define

1, T2 <
_ u5tp  V=g.(x)tp R
3; = - 2(2 l( ) )') ——%?iuz th‘ gl(X)tp
pTv_gi(x)tp -
9:(x)

we obtain
(ui(T_'t) + 3, )gé(x +1p) — p = uy(T;t)g;(x + tp) — p + 3, 9;(x + tp)
= (1;9;(x) = 1) (1 = t) + u{;tpTV?g,(x)tp ) — uf3tp "V g,(x)tp)
= (u;9;(x) — p)(1 —t).

The use of 7; and 3, in this manner removes uncertainty and bias concerning the
reduction ofluigi(x) - ;zl in the same way as was achieved for the linear affine

g,(x); and when Vggi(x) = 0 for all x (g, is linear affine), 3; = 0 and this technique
reduces to the method developed earlier for linear affine g;(x). The following
definitions will allow incorporation of this modification into the Primal-Dual

Algorithm:

or in vector-uiatrix notation.




u(t, 7, 3)=u + F[—UG_I\"QTp + G lepy - u]t + 3

where 3 is an m x 1 vector. the i'? entry of which is 3;, and 7 is an m x m matrix

equal to diag(7; ).

VI.2 A Modified Primal-Dual Algorithm

The Modified Primal-Dual Algorithm (MPDA) is essentially the Primal
Variable Algorithm with the addition of the modified Primal-Dual Newton step in
the dual variables. Other changes have been made so that the requirement of
w < 1/62 is met. Consider the algorithm at the end of an outer iteration for an
arbitrary g > 0. meaning the tolerance || p It /4 < 7= %m has been met.
Suppose the algorithm has also achieved u;g,(x) — . =0, 1€ 1. This implies w =0,
M/i = H, and the tolerance thus becomes IPliag/, = IP U < = % It is at this point
in the algorithm that u is decremented. Let f denote the decremented value, so
7 =(1-8)u for some 8 € (0, 1). When u is so decremented. w no longer equals

zero. In fact, for an arbitrary i €I,

u;9,(x)
T

1 —6]_ 8 _ 8
“(1—0"1—0=”“"1—6'

| li-o-2)

i
By specifying 8 < 1/63, we ensure that when reducing y to Z =(1 — 8)u we have

w < 1/62 at the start of the next iteration. Recall that with the modification to

the dual Newton stcp, w is reduced monotonically during the course of an outer
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iteration, and once a step size t—=1 is achieved the algorithm maintains
1;9;(x) = = 0.1 €I (and therefore w = 0) for the remainder of that outer iteration
until the tolerance is met and pu is decremented. If the situation occurs where the

tolerance is met at the end of an outer iteration. but u;g;(x) — ¢ # 0 for some 1 € I.

the algorithm simply takes one more Primal-Dual Newton step with t =1,
achieving u;g,(x) —y = 0,1 €l. and w = 0. By Corollary IV.3 tuis maintains the
necessary proximity to the central path. p is then decremented tomw = (1 —8)u

resulting in w = 1/62, and the next outer iteration begins.

Input

Reduction factor 6 € (0,1/63]

u;g.(x
Tolerance 7 = %\Jl — w. Assume xnzéxl '1 - —’—gﬁL—) < L always.
1

= 62

T is an accuracy parameter.
x0 € R* is given, as 18 ;10 < 1/T, and u? > 0,1 €I such that “p(xo.uo,uo) “M/# <r

and u?gi(xo) ~ub=0,iel
begin

while ¢ > Y/2m do
begin outer iteration
while IPlag/u < 7 do
begin inner iteration
X = arg Or?ghi< I{Q(X,p) s.t. (x 4+ Ap) € R*,
1Plpg /2 2041 + w}
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X = X+ Ap

u=uA.7.J3)

end 1nner iteration

“,'.(I,'(X)
7

1-—- >0

if max
1€1
begin one extra step
X = x+ D
u o= u(l.7.3)
end one extra step
p = {1—-8)
end outer 1teration

end
The lemmas and convergence/complexity theorems apply to the Modified Primal-

Dual Algorithm as they did to the Primal Variable Algorithm. The bounds on the

number of iterations two choices of § are:
6= O(%) = O(\ﬁﬁlln(e)D iterations
=0(1) = O(m lln(e),) iterations

and the corresponding computational complexity is:




O(uvm |in(e)|) for 8 = 0 )
O(n3m lln(e)[) for 6 = O(1)

As stated at the end of Chapter 3, if the problem P has only linear affine
constraints, then setting e =27 L allows a purification algorithm to find an optimal
vertex with no increase in complexity (see Gonzaga(1992)).

Another significant attribute of the Modified Primal-Dual Algorithm is
convergence of the Lagrangian multipliers to an optimal vector of multipliers, u*.
This results from the way in which the MPDA assumes the behavior of the
standard primal variable SUMT at the end of each outer iteration. Suppose the
algorithm is at the end of an outer iteration for an arbitrary g >0. Then
u,g;(x) = 1, 1 € [. Additional modified primal-dual Newton steps will coincide with
standard SUMT Newton steps. and will also maintain u;g;(x) = g, 1 € I. Thus, the
MPDA inherits the Lagrangian multiplier convergence property of SUMT, as
proved in Theorems 25 and 26 of Fiacco and McCormick(1968. 1990).
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CHAPTER VII: LINEAR PROGRAMMING WITH THE MODIFIED
PRIMAL-DUAL ALGORITHM

VIL.1 A Review of Anstreicher's Results

In previous chapters we have developed a modification to the Primal-Dual
Newton step which allowed for a guaranteed reduction in the deviation from
perturbed complementary slackness with each Newton step. That reduction in
turn allowed the application of the den Hertog, Roos, and Terlaky(1990) analytical
techniques to prove convergence and polynomial complexity for the Modified
Primal-Dual Algorithm. This chapter will show that the modificationt also allows
us to adapt Anstreicher’s results for quadratic programming with the logarithmic
barrier function to linear programming with the Modified Primal-Dual Algorithm.
Thus, we have another way to show polynomial complexity for the Modified
Primal-Dual Algorithm, albeit for a less general class of problems. (An attempt
was made to adapt Anstreicher’s results directly to the Primal Variable Algorithm
for small w, as was done with the work of den Hertog, Roos, and Terlaky. Because

of the relatively tight nature of the inequalities in several of the lemmas, however,




this has not been successful.)

We begin by reviewing Anstreicher’s convergence and complexity proofs for
the traditional SUMT logarithmic barrier algorithm applied to a quadratic
program. Such a review allows the reader to see a significantly different approach
to proving polynomality, one that makes important use of the linear algebra
associated with the linear affine censtraints of the quadratic program. We then
show that the Modified Primal-Dual Algorithm. when applied to a linear program,
can be analyzed for convergence and complexity in the same manner as
Anstreicher’s treatment of SUMT. The lernmas and theorems from
Anstreicher(1990) are presented in this chapter without proof. For the interested
reader. the proofs are in Appendix 1, precisely as developed in Anstreicher(1990)
and Anstreicher et al(1990) with only notational changes to conform to this
dissertation.

Let us define the standard quadratic program (QP) in E™ using notation

sirnilar to Anstreicher:

QP: min f(x) = b'x + %XTQX

s.t. Ax—c2>0
for b€ E™, c € E™, A an m X n matrix, and Q an n x n symmetric positive semi-
definite matrix. We assume the data is integer with bit length L. and as before the

feasible region R is bounded with a non-empty interior R*. This implies that

m > n and the columns of A are linearly independent. The Wolfe dual of QP 1s
QD: max bTx + %xTQx —uT(Ax —¢)
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st. b+ Qx—ATu=0

u>0
The dual can be simplified. b+ Qx~ATu=0=u"A=bT4+x'Q =
bTx + %XTQX —uTAx+ule=bTx + %XTQX ~(bT +x'Q)x + c'u
= - %XTQX +cTu
Thus we can write the dual problem as

QD: max d(x.u) = - % IQx + ¢Tu
st. b+Ox—ATu=0

u>0

Lemma VIL1: Let x be feasible in QP and (X, @) be feasible in QD. Then
f(x) —d(x, @) > 0.

Let 2 denote the ith row of A. We define the logarithmic barrier function

®(x, p) for x € R* and p > 0 as before.

O(x,pu) = @- - .’flln(ai'rx —-c;)
1=

The gradient and Hessian of ®(x,u) are




X+b_m a;

_Q
VL) = iZ1(e;"x —¢;)

The n x n matrix H will again denote the Hessian of Phi. By Lemma I11.2. H is
positive definite. ®(x.x) is continuous on R* and goes to + oo at the boundary of
R. so the compactness of R guarantees ®(x,u) has a minimizer x(u) € R*.

For an arbitrary ;2 > 0. Anstreicher employs three different measures of the
distance of a point x € R* from the central path x(u). Some notational definitions
are necessary: s = Ax —c. S = diag(s), s~ = (1/s|, 1/sqy .. .. 1/spyy)T =S~ le.
The primal variable Newton stepis p, = —H™ IV®(x.1). and p, = Ap; is the step
in s resulting from the Newton step pz in x. The three measures are:

(1) 8(x.u) = ISu—ef

min ”
ul ATu = b+ Qx

(@) 5~ 'Sl

(3) Ipzly

To better understand these measures, it may be helpful to apply them to the

familiar problem P from previous chapters: “ -};Su - e” is the same as “ ulg - ;1“, (3)
is the norm of the Newton step in the primal variables with respect to the Hessian
of ®(x,u), and (2) is the same as (3) but ignoring the contribution of the objective

function f(x).
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Lemma VIL.2: Let x € R* and g > 0 be arbitrary. Then

I~ 'pslf <ipeify < 8(x.m
Lemma VII.3: Given x € R*. suppose ”S ~lpg ” <1. Let X =x+pz.§ =s+pg,

and S =diag(s ). Let H = VIB(X .p), p = —H ™~ IV®(x 1), and ps = Apz.
Then X € R* and

IS~ tos [ <ipz 1 <05 ) SIS ™ 10l < ypeify < 6(x)?

2
1P Vh

Lemma VI1.4: If x € R™ and jipyyy < 1. then &(x,u) — B(x{p),u) < ———
1 —{pzlfr

Lemma VIL5: If x € R* and |p, |y < 1. then

1Pzl + Pz l)

() = Hx()) | < Lo i

The algorithm used by Anstreicher and Anstreicher et al is similar to that of

den Hertog, Roos, and Terlaky(1990). It begins with a feasible interior point x?

and an initial barrier parameter value u? = 2O(L). From point xF, the algorithm

conducts linesearches along a sequence of Newton steps until it reaches a point

k+1

where | pz||g < 7. This point becomes x , ,ulc is decremented to

;zk tlo(1- B)pk for some fixed # € (0,1), and the process starts over again. The

o(L)

algorithm terminates when ||p;|y < 7 and mpf <e=2" , from which the
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optimal solution may be found m O(m?) operations. Convergence and complexity

of the algorithm are proven by Anstreicher with the following two theorems.

Theorem VIL1: Let z* denote the minimum value of f(x) for problem QP. After
o — O(L)

O(L/8) outer iterations. the algorithm obtains u = * such that mu* < and
g po= u

SR T O Lk r(1+r)) —0(L)
a point X = X such that f(x) -z S<l+tl——r——>\ﬁﬁ 2 )

The proof of Theorem VII.2 requires the following lemma proving a guaranteed
reduction in ®( - .y) along the Newton direction. It is similar to the den Hertog,
Roos. and Terlaky Taylor series expansion result used in the proof of Lemma IV.1.
In that case. the proof was quitc long and detailed, and was omitted. Anstreicher’s

proof for this lemnma is somewhat shorter, and is included in Appendix 1.

Lemma VIL6: Let A = Then

— 1
1 +pzlly

®(x,1) — B(x + A prot) 2| Pelly — In(1 + P2y

Corollary VIL6: Let 7 <|pzfg < % Then a pure Newton step (\ = 1) obtains

O(x,p) ~ B(x +pgo) A =72 +In(1-7)+7>0

We can now proceed to Theorem VII.2, which bounds the number of inner
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iterations per outer iteration.

2
—3 Ef = T(11_+TT), and N denote

Theorem VIL.2: Let A=7—In(l+7), Eg =

1-7

the number of inner iterations required for an arbitrary outer iteratation. Then N

is bounded as:

v<lf 8 ,
Ngz(l_e(em+zEfm)+E¢)

Combining Theorem VII.1 and VIL.2 gives the complexity result we seek: the total
number of Newton iterations required by the algorithm to solve problem QP is

bounded by

fm +2E~Nm E
1 f ¢
K( =9 +T) O(L).

The choice of § has much the same influence as in the results of den Hertog, Roos,

and Terlaky:
6= O(—lm) = O(ym L) iterations

6 = O(1) = O(mL) iterations.

In Corollary VIL.6 it was shown that a pure Newton step would achieve a

guaranteed reduction in ®( -, u) i 7 <p,iy < L. To ensure that 1Pzl < %
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throughout the algorithm, note that Theorem VII.2 implies that
0

1s the maximum reduction possible for any step size, while Lemma VII.6 shows a
reduction of 0.5 — {n(1.5) > .0945 is guaranteed with the correct choice of step size
for || pe ||y > % Thus 1t suffices to restrict the maximum possible reduction to less

than .0945 to ensure that |p, |y < % This may be done by choosing 8 such that
g
7= (6m +2E i) + Eg < .0045. (7.1)

For small values of 7 both Ef and Eg approach zero, so # such that 6%m < .0945, or

6 < .3/vm will suffice. This result will be important in later analysis.

This concludes the review of Anstreicher’s complexity results for QP; the
remaining portion of this chapter will show that these results may be applied to
linear programming with the Modified Primal-Dual Algorithm to achieve the same

complexity bound.

P LA AR AR LA e T TACT A

Algorithm

To remain consistant with the notation used in the development of the
Modified Primal-Dual Algorithm, let us redefine the linear program (LP) in a

manner identical to the definition of problem P in Chapter III, with the additional
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restriction that the constraints be linear affine:

LP: min b'x
s.t. g;(x) > 0 and linear affine, 1 €1

x€eE"

All restrictions on the feasible region for P apply to LP. This LP is the problem

we will address throughout the rest of this chapter.

In Chapter III this thesis introduced the matrix M and its relationship to the

Hessian of the logarithmic barrier function. Of particular interest is

IM(x.p) = V3d(x,1) —

i™Ms

(1 —~ uig;i(X)) livgi(;i)(Z)g?i(X)T’

where u; > 0,1 € L. As before, let H denote the Hessian of ®( - ,u). It is clear that

if u;g;(x) — = 0 for all i € I, then H(x,u) = sM(x.p).

Lemma VIL7: Let u;g,(x) —p =0 for alli € I, and let § €(0,1) be given. If

7 =(1—6)u, then
M) = (1) Hoxw)

Proof: From (3.7) we have

M) = i 139,() {Vm(x)wi(x) }

? gi(x)2
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Using u;g;(x) = p and @ = (1 — 8y, we get

m

o & i [ Va0V
FMOT ) = Z(l—la)#{ }‘(1‘11-—‘>H(""")

=1 gi(x)z

which completes the proof. [J

A Linear Programming Version of the MPDA. The algorithm begins with a

feasible interior point Y. an initial barrier parameter value pO = ZO(L). u? > 0 such
that u?gi(xo) —u=0foralliel and IPlag/p =175 < 7. Let the kth outer
iteration be arbitrary. Starting from point x*, the algorithm takes a series of pure

Primal-Dual Newton steps in the primal variables, that is,

(x5,u)
N S Ll S koky oo
Pz = ( i V‘D(xj,u ), 1=1,23,...
At each such step, each u,, i € I is updated to u;(1,7;,0). These inner iterations
continue until the algorithm reaches a point where | pjy < 7, say the 71" iteration.
Then xF+! = xg, p* is decremented to uF 1 = (1 — 8)uF for some fixed 8 € (0,1)
satisfying (7.1), and the process starts over again. The algorithm terminates when

Pzl < 7and mpf <e= 9 —O(L)

The initial Primal-Dual Newton step in the primal variables will be identical in
direction to that generated by the logarithmic barrier function, but will be shorter

by a factor of (1 — §). Therefore, the reduction A in @( -, ) from this first iteration
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will be

A> (1= +in(1—(1—8)7)+ (1 —8)r. (7.2)

Since 7 1s small and positive, the right hand side of (7.2) is strictly positive for

8 = 0, equals zero for § = 1. and is strictly monotonically decreasing with respect to
6 on (0,1). Thus, A >0 for 8 €(0,1). After the initial pure Primal-Dual Newton
step in the primal variables. M/u = H and the exact results of Anstreicher are
obtained. (It is also permissible to conduct linesearches along the Primal-Dual
Newton directions after the first inner iteration’s pure Primal-Dual Newton step.
The decrease in ®( -. ) will then be guaranteed by Lemma VIL.6 instead of
Corollary VIL.6.) Therefore, the complexity results proved by Theorems VII.1 and
VIL.2 for the logarithmic barrier function applied to QP apply for this version of

the Modified Primal-Dual Algorithm applied to LP.
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CHAPTER VIII: SATISFYING THE INITIAL CONDITION REQUIREMENTS

We begin this chapter by stating the general problem to be addressed and key

notation used.

min _ f(x)
re k"
st g;(x)>0,i€el=(1,2,...,m)
where —f(x) and g¢;(x),1€ (1,2, ..., m) are concave quadratic functions.

Standard Notation and Definitions

R={x€E"|g(x)20,iel)

R*={x€E" | g(x)>0,i€l}

B(xp) = o - ,rflln(g,-(x».
1=

88




1 =1 ql(\()
. 2 mvVe.(x)\Va(x)T 24.
Hix.p) = Vi®(x.p) = v /ft(x) + ng’(x) gzl(x) _Y 9:(x)
(Note: when f(x) is lincar. V2f(x) vanishes.)
in Vi) Vgi(x)T  Vigi(x)
Mxaup) =) ugix) — — - —
I; ! L gi(x)“) 9;(x)
j= —MUb = WS Vex)/gx) | = ~(IM)TIVa(xp)
p(x,up) = -1 u,Zl 9:{x)/g;(x) 7 (%,p)
1=

When clarity is not affected, let p = p(x,u,p), H = H(x.z), and M = M(x,u,u).

Ip g = (pTHp)'/2

1Plpr/, = <pT(711JM:>p)1/2

For some zeE! let the region R, = {xeE™ | f(x) < z, x € R} be bounded with a non-

empty interior. Then for some positive integer r we define the analytic center of

R, as the point in R, which solves
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This dissertation has presented two implementations of the Modified Primal-
Dual Algorithm (MPDA), demonstrating two ways to show polvnomial complexity
for the algorithm. In each of these implementations. the analysis assumes a fairly
restricrive initial condition: namely. a known initial point (xo.uo) and barrier

parameter 9 >0 such that the following conditions hold:
Yerr (8.1)

Ip(x ) H_w/#() <

ud < 20UL), (8.3
Recall that if u?gl-(xo) —u=0,1€l, then (8.2) is equivalent to “p(xo.uo,yo) “H <.
Also, (8.3) applies only for problem LP, that is, when the objective function is
linear and the constraints linear attine. In practice. one may not receive such a
conveniently structured prot:ei.  Fortunately, it 1s a straightforwara task to meet
these conditions given an arbitrary starting point X € E”. Our first concern is

finding a feasible value of x.

VIII.1 Feasibility

The following method for achieving feasibility is a version of the Two Phase

method often used in linear programming. For a detailed discussion of that
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application, see Bazaraa. Jarvis. and Sherali(1990). Given X, let 4 denote the set
of ndicies of constraints that are non-positive for X. Now define a set of artificial
variables aj. j € Y. and a vanable z € EL Let ag = — gj(f) +1.)e¥.

2V = max{a;) + 1. and formulate the following protlem FP.

FP: min z
s.t. gz(X) 2 0, 1 € [-%

gj(x)—%(ljZ().jE‘V

By construction. FP has a solution and (X. Y. 29) is strictly feasible for FP.
Furthermore, FP has a linear objective function and concave quadratic constraints,
so the algorithm of den Hertog. Roos, and Terlaky can solve FP in polynomial
time. The number of constraints remains O(m), and if we assume m = O(n}, the
computational complexity is the same as for problem P. In reality, the algorithm
may be terminated as soon it obtains a negative value of z. The associated value of
x is strictly feasible for P and may be denoted X . If the minimum z is non-
negative, then P is infeasible. With ¥ € R*, we have satisfied (8.1), so we now
proceed to satisfying (8.2) and (8.3), known as centering.

Another approach to finding an interior point is found in Fiacco and
McCormick(1968, 1990). Let X € E” be arbitrary, and define the sets

S={i] g;(x)<0,i€l} and T ={i} g;(X) >0,1€1}. Now minimize

UlxpF) = = 30 gi(x) + 6k 3 In(gy(x))
teS 1eT




for 4¥10 as k = + 00. When in the course of this minimization a new constraint is
strictly satisfied. its index 1s moved from S to T, U(x,uk) 1s redefined accordingly,
and the process is begun again. This continues until all constraints are strictly

satisfied or 1t 1s shown no interior point exists.

VIII.2 Centering

A straightforward method for initial centering is found in McCormick(1991b),
based on the work of Huard(1967) and Fiacco(1979). Given that ¥ € R* (possibly
from the application of the feasibility methodology above), define V0 = {x € E |

f(x) < f( ¥ )} N R*. One then finds an approximate solution to the problem

max [ —f(x) +1{( X )] ﬁ 9;(x). (8.4)
xe VY 1=1

This is equivalent to finding an approximate solution to

min _ —In[—f(x) +1( ¥ )] - ¥ in g;(x) ). (8.5)
xe VY i=1
Let x¥ approximately minimize (8.5). Then we have

vi(x%) m Vg.(x?)

[~ fx0) +1(%)] =1 g;(x0)

approximately equal to zero. Now let 0 = f(X)- f(x9). and we have (x0,x0) that

approximately solves
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min (D(x.yo).
x € R*
With the (familiar) definition of u? = ﬂo/gi(xo), and given a good enough

approx..nate solution, we have (x?, u?, 1%) which will satisfy (8.2).

Although this two step approach is a standard one and very workable. we now turn
to a method which combines the feasibility and centering operations and makes use
of a polynomial-time analytical centering algorithm. The method is based on Jarre
(1991). which demonstrated the polynomality of a method of analytical centers
when applied to our problem P. The presentation here will nuc include detail on
the polynomality of the centering algorithm. which is beyond the scope of this
research--readers interested in such detail are better served by reading the original
paper. Rather. we show a scheme adapted from Jarre (1991) which allows the
application of his algcrithm to finding (xD, u?, yo) satisfying the initial conditions

of the MPDA.

VIIL.; Combined Feasibility and Centering

We 1uake the following definitions:

i =

Gi(x,7) = gi(x) —vd;, i €1
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ﬁ

m
Wptl =~ ,Zlv.‘h(o)

1=
~ — T
Tmeixy)=wy,  x+v.

This gives us

Now let

@(‘)’,V) = {X € En , !71(3(,7) 2 0’ 1 € I» §m+](xvy) 2 0}'

for some fixed pair (v,v) such that v € E!, v < oo. Since R is a bounded convex
polytope and R(~,) has as constraints perturbations of all the constraints forming
R, R(5,v) must be bounded (Fiacco and McCormick(1965, 1990), Theorem 24).

The point x = 0 is an element of iﬁ(l,l) s0 Iﬁ(l,l) is non-empty. In fact, (8.6)
shows that x=0 is the analytical center of R(1,1). We now make two successive
applications of the analytical centering algorithm, tie first with a strictly
monotonically increasing sequence {uk}Too with 9 = 1, and the second with a
strictly monotonically decreasing sequence {‘yk }10 with 9 = 1. The first
application of the algorithm ‘‘backs off” the m+1% constraint until it no longer has
any significant effect on the analytic center, and the second application decreases

the perturbations to the first m constraints until R closely approximates R, and
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thus the resulting close approximation of the analytical center of R is a close
aproximation of the analytical center of R. In this way, two applications of a
polynomial analytical centering algorithm yield a a close aproximation of the
analytical center of R, denoted xU, which implies

v g,(x")

52

=1 9:lx

is nearly zero. All that remains is to then select a large value of 49 such that

wd < 90(L) 56 that for problem P.

1 Vg.(xY)
Ve ) = %— Z—L—O——
H 1=1 gi(x )

remains close to zero, and the usual definition of u? = yo/gi(xo) vields (x9, uf, po)

satisfving the initial conditions in (8.1) through (8.3).
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CHAPTER IX: SUMMARY AND RECOMMENDATIONS FOR FUTURE
RESEARCH

IX.1] Summary of Results

We begin this summary by restating the problem to be solved along with

important notational conventions.

Standard Notation and Definitions

General Constrained Optimization Problem:
min__{(x)
1€ E"?

s.t. gi(x)>0,iel=(1,2,..., m)

R={x€E"|g;(x)>0,iel}
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R*={x€E"| g;(x)>0,i€l}

i=1 gi(x)
o V(x) mVe(x)Vgx)T  Vg(x)
H=V*®d(x.u) = : & — :
bett) = T 2 P 73]

(Note: when {(x) is linear, V2f(x) vanishes.)
m

L(x,u) = f(x) - .Zlu,-g,-(x)
1=

VL(x,u) = Vi(x) — % u,;Vgi(x) =0, u; > 0, il
=1

1=

M = 3 ugx)

=1

Vg, (x)Vg(x)T  Vig(x)
gi(x)* gi(x)

}foerR* and u; >0.i€l
m

p= -M- ‘{bT - u,zlw,-(x)/gi(x)] = — (M) ve@n)
1=
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1Pl = (p7Hp)/

1Phae = (PR )2

_ u;9;(x)
w = max -
1

1
el ’ s
1—wply < IPlag/ < T+ w|p|y for w<1 and f(x) linear

This dissertation began with a review of concepts fundamental to constrained
optimization with interior point methods and current research in the field. That
was followed by a detailed description of the Primal-Dual Algorithm developed by
McCormick(1991b). Recall the basic idea of that algorithm is to use Newton’s
method with a step size line search to find solutions to the following set of

equations:
V. L(x,u) =0
u;9,(x) — pk=0,iel
where x € R* and u; > 0,1 € I. These equations are solved for a sequence of
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positive ,uk such that {,uk}J,O as k- + oo. The first major research result, in
Chapter IV, was showing the similarity of p, the primal variable Newton direction
from the Primal-Dual Algorithm, with the Newton direction —H ~ !V®(xp) for the
standard SUMT with the logarithmic barrier function. This similarity was
exploited by constructing a Primal Variable Algorithm using the search direction p,
and limiting the divergence of p from — H ™ !V®(xy) through the measure w. It
was shown that by keeping w small (w <1/62), the SUMT polynomiality results of
den Hertog, Roos. and Terlaky(1990) could be used as a template to construct a

convergence and polynomial complexity proof for the Primal Variable Algorithm.

In the Primal Variable Algorithm analysis. w < 1/62 was specified. Ensuring
that w meets that criterion is another matter. The degree to which
u;g;(x) — /.I.k =0, 1 € I is violated during the course of the Primal-Dual Algorithm is
very dependent on the way the u; variables change. Thus, Chapter V contained
research into the performance of the dual variable Newtcn direction for an
arbitrary u;, particularly when using a step size generated by the Primal Variable
Algorithm. The result was two cases, determined by the sign of u;g;(x) — uk. Both
cases revealed that the maintenance of w < 1/62 is not certain when movement in
the dual variables u;, i €I, according to the dual Newton direction, is appended to
the Primal-Variable Algorithm. Thus, further study was required to establish

polynomiality for the Primal-Dual Algorithm.

In Chapter VI, research centered on developing a modification to the dual
variable Newton step for an arbitrary u; to guarantee w < 1/62. First, the simpler

case of a linear affine g;(x) lead to the discovery that a simple step size change
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using existing information could guarantee a monotone decrease in iuigl-(x) — pk)
with each Newton step. Extending this result to the more general quadratic g,(x)
required both a step size change and an additive term to the dual Newton step,
again with existing information. With a monotone decrease in ]uigi(x) — ykl at
each Newton step now ensured for 1 € I, movement in the dual variables according
to the modified to the dual Newton step was added to the Primal Variable
Algorithm, resulting in the Modified Primal-Dual Algorithm (MPDA). The
MPDA is essentially the original Primal-Dual Algorithm with the modified dual
Newton step, using ®(x,x) as a merit function. The modified dual Newton step

and small decrements to u guarantee w < 1/62, so convergence and polynomiality

follow from the Primal Variable Algorithm.

The effect of the modification to the dual Newton step had further
consequences. In Chapter VII, analysis revealed that when the MPDA is applied
to a linear program (LP), the polynomiality results of Anstreicher(1990) apply
directly. Anstreicher’s work is remarkable for showing polynomiality of the original
SUMT of Fiacco and McCormick for quadratic programming (QP) when initial
conditions and parameter values are correctly specified. When a linear objective
function is specified to conform to our MPDA analysis, QP becomes LP, and it is
shown that Anstreicher’s proofs extend to the MPDA. Hence, we have another
convergence and polynomial complexity result, although for a less general class of

problem.

The research of this dissertation concludes in Chapter VIII, which addressed

the problem of finding an initial point (xo,uo,uo) which meets the fairly restrictive
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initial conditions used by both den Hertog, Roos, and Terlaky(1990) and
Anstreicher(1990). The conditions are feasibility, namely x? € R*, u% > 0, and

#0 > 0; and centering, meaning ”p(xo,uo,uo) I‘H is small. Techniques to achieve
feasibility are covered by many authors--feasibility results from Bazaara. Jarvis,
and Sherali(1990) and Fiacco(1979) .apply, and were covered in Chapter VIII. The
chapter also presented a centering method from McCormick(1991b), based on the

work of Huard(1967) and Fiacco(1979), and concluded with a combined feasibility

and centering technique adapted from Jarre(1991).

IX.2 Future Research

It is possible that the results developed here for convex programming with
quadratic constraints could be extended to smooth convex programming. We
define smooth convex programming by way of a relative Lipschitz condition set
forth in Jarre(1991). Let x and x + h in R* and z € E” be arbitrary. Then we say
the relative Lipschitz condition is satisfied if for some M > 0, the Hessian of each

g9,(x) satisfies the following:
.ZT[ng(x +h) - v2g,.(x)] z. <Milh “H(;)ZTV2g,~(x)z

where

m Va.(x)Va.(x)T 2,.(x
H(X) = ngl( )ng( ) _ \Y% gz( )

S gix)? 9i(x)
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The convergence and complexity results for the logarithmic barrier function in den
Hertog, Roos, and Terlaky(1990) extend to smooth convex programs, with M
entering into the complexity polynomial. It should be straightforward to make the

same extension to the Modified Primal-Dual Algorithm.

Another research area is the choice of merit function. For the general

constrained optimization problem
min_ f(x)
? E En

s.t. g;(x) >0,1el.

there are two candidate functions which incorporate primal and dual variables

mentioned in McCormick(1991a),
m m
MF1(x,u,p) = 1(x) - u_len(gi(X)) + _Zl[uigi(X) ~ uln(u;g,(x))}, and
= =
- T — 1 &1 2
MF2(x,u,n) = VL(x,u) "M ™ "VL(x,u) + ¥ gu;g; — 4],
=1

for x € R*, u > 0, and g > 0, where the matrix M is defined as in earlier chapters:

Vgi(x )Vg,( )T V2g,(x)
Zuzgz x) s e

foerR*andul->0.iEI.
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MF1(x,u,u) has the interesting property in that a stationary point with respect to x

and u for MF1(x,u,u) satisfies the equations motivating the Primal-Dual Algorithm

(McCormick(1991b)):

VL(x,u) =

u;9,(x)—p=0.1€l

Successful use of such a merit function might reduce or eliminate the need for a

modification to the Primal-Dual Algorithm to show polynomiality.

Finally, only limited mention has been made in this dissertation to
convergence of the Lagrangian multipliers. Further research into their behavior,
particularly in the presence of degeneracy or alternate optimal solutions, is in
order. Within the context of quadratic programming, alternate optimal solutions
are possible whenever the objective function has a singular Hessian. that is, the

Hessian is not positive definite.
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APPENDIX 1

This appendix coutains the proofs for the lemmas and theorems from

Anstreicher. which are presented without proof in Chapter 7.

Lemma VII.1: Let x be feusible in QP and (X, @) be feasible in QD. Then

f(x) — d(%. @) > 0.

Proof: f(x)—d(x,d) =bfx + %XTQX +%SETQ)’E —cTd. Since (X, @) is dual feasible,

bT = GTA - TQ, =
f(x) — d(%, &) = TQx + TTAx — xTQx + 1%TQ% — 7Tc
= iT(Ax — c) + $xTQx — £TQx + 12TQ%
Now define s = Ax —c.
f(x) — d(%, &) = @7s + 5xTQx — XTQx + JxTQ%
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=1Ts +i(x - %)TQ(x - ¥)

Thhe feasibility of x in QP implies s > 0. We also have @ > 0 and Q positive

definite. Thus
f(x) ~ AR, 0) = &% +Hx—2)TQ(x -%) >0
which proves the lemma.

Lemma VII.2: Let x € R* and p > 0 be arbitrary. Then

IS~ ol <ipeify < 60cn)*.

Proof: |p2 ]]%, = prr(%Q +ATS~ 2A)pz > pHATS ~2A)p, = " S— lps"“z, for the first

inequality.

Now let u = u(x,p) which we define as the minimizing value of u resulting in

8(x,u). Therefore ATu = b + Qx, and

1Pzl = V&(x,u)TH ~ 1V &(x,pu)
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S —— .

+ 1 - _ 1V} oo € _ + 1 -
:<QXP P _ AT l)r(‘%Q-%AIS ZA) I(QX# > _ AT 1)

where o is the maximum eigenvalue of
S=1A(LQ+ATST7A)TIATS T (AL1)
To evaluate o, we see that
[s -1A(LQ + ATS T 2A) T ATS 1]2
=s-1A(lQ+A"S~ 2A)"1ATS 15~ 'A(2Q +ATS ~24)"1aTs !
—5-1A(LQ+ATS72A) " HATST2alQ+ ATS TRA)TIATS T (AL2)

The maximum eigenvalue of (A1.2) is less than or equal to that of the following

matrix (Al1.3)

s=1a(Q+ ATs—2A)"1(1Q + ATS—2A)iQ+ ATS=24)~1ATs ! ST
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=S 7IA(JQ +ATS~24) " 1ATs !

which is (Al.1). Since the maximum eigenvalue of the square of (Al.1) is less than
that of (Al.1), namely o. we must have o < 1. which implies |p, ||‘;1 < 6(x,p)2 and

completes the proof of the lemma.

Lemma VIL3: Given x € R*, suppose ”S - lps ” <1l LetX =x+p; S =s+pg,
and S = diag(s ). Let H = V?®(X ), py = —H ~'V&(X .u), and p; = Aps.

Then ¥ € R* and

13 ~os [ <ppz i < o= ) <[5~ sl <ypelly < 6xp)?
Proof: 5§ =s+pg = S(e +S~ 1ps). Since ”S - lps“ < 1, the absolute value of each
element of the vector S~ 1ps must be less than 1, and each element of (e +S~ lps)

is strictly positive. The vector s is also strictly positive, so § must be as well and

therefore ¥ € R*. Now consider

min ” Su—e “

6(X ,u) =
) u|ATu=b+Qf

Let u satisfy ATu = b + Qx. (One such value is u = u(x,x).) Then
X =x—H~ 1V<I>(x,p)

=x—(RQ+ATS %)~ 1(———Qxﬂ+b~ATs— 1)
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=x—(2Q+ATS72A)71ATS - 1(%— e)
Some manipulation yields
LQ(x %) = JQ(hQ + ATS ~24)~1aTs ~ (Su o)

and using the fact that 1o(1Q + ATS “2A) " 1=1-ATS2A(1Q + ATS~24)~!
e\ i 2

we obtain

LQ(x—%) = ATS - ‘(%ﬂ _ e)— ATS~24(JQ+ ATS ~24) = 1aTS - 1(% _ c)

S“—e+S‘1ps) (A1.4)
From (Al.4) we see that

Q% =Qx—ATu+pATS " Ye—S~1p,)
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= —b+pATS e -5 1p) (AL5)

so by setting @ = uS~ l(e -S~ lps) we have ATd =b+ Qx. Now let
P, = diag(p;) and let (S - 1ps)2 denote the vector of the squares of the elements of
S~ lp,. Then

6% ) 550 =]

Tu| ATo = b+ Q%

55|

—

<

I

~l(s+P,) s (e~5""p,)—e]

~[(1+5-1p, e=5""p,) €|
=Je=5=1p,+S~1ps—S~1P,Slp,—e]
=[(s~e. 1|

<[s='p,?

This proves §(X ,u) < "S - 1ps'lz, and the remaining inequalities are a result of

Lemma VII.2.
Iz |}
Lemma VIL4: If x € R” and |pz |l < 1. then ®(x,ps) — B(x(u)p) < uz Hn2 |
— I Pxlig
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Proof: For an arbitrary fixed y > 0. ®(-.u) is convex, so

&(x,1) — B(X + propt) < — VO(x,1)Tp, = P2 1y (AL6)

Let x¥ = x, and define {x0, x!. x2, . .. } as the sequence of points obtained by

generating a succession of N~wton steps starting at x. From (Al.6) and Lemma

VIL3,

B(x41) — x{ 1)) = :)(@(Xi’“) o+ 1)

o
91 +1
< Zonpz i
1=

2

< Pzl
- 2
L~|1pz Iy

thus proving the lemma.

Lemma VIL5: If x € R* and |p; |y < 1, then

_ Pzl(L + 1Pz li)
£06) ~ ()| < o 2

Proof: From the convexity of f(-) we get
Vi(x)p; < f(x + ;) —(x) < Vi(x + p2) P2 (ALT)
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If the right hand and left hand sides of (A1.7) can be appropriately bounded. the
lemma can be proved. Beginning with the left hand side and the fact that
Vi(x) = Qx + b = pV®(x,u) + #ATS ~ le we see

Vi(x)Tpy = uVe(x.11) 'py + pe™S T Ap,

= uVd(x.u) Tpy + pe™S ™ Ip,. (A1.8)

Now V&(x,u)Tp, = V&(x.pu)( —H~ 1vq><x.ﬂ)) = —V®(x,u)TH " 'HH ~ 1Vd(x,p)

= —|Pz ||%1. From the Cauchy-Schwartz Inequality and Lemma VII.2 we have
eTS ™ 1py 2 —[€7S " Ips| > —lell S ool 2 — v g

Substitution into (Al1.8) yields
Vi(x)"pz 2 ~ Pzl — N | Pzl (AL9)

Using (A1.5) and noting that ¥ = x + p;, we can bound the right hand side of
(A1.7) as follows:

Vf(x + pz)sz =(Qx + b)Tp:r

= upFATS ~ (e~ 5~ p,)

111




= ue"(S™1Ap, ) - upfATS 1S~ Ip,
= ue™(S ™ 'ps) — S s P
< WL || Pz |- (A1.10)
We can now subsitute (A1.9) and (A1.10) into (A1.8) to achieve
~ Pz |}y — #NT | Py < f(x + pz) — (%) < u¥TA |z g
— JNTH || P |l — #VT || P iy < £(x + py) — £(x) < p¥T | P2 Iy + 4T | D2 [y
|£(x + pg) — £(x)| < 40 | P2 (L + P lar) (AL.11)

Again let x¥ = x and {xO, xl, x2, .. .} denote the sequence of points obtained by
generating a succession of Newton steps starting at x. Applying (Al.11) and

Lemma VII.3 we have

1£(x) — Hx()) | = | S (Hx) = i+ 1)

1=

o0 . .
< Z%)lf(xz) _ f(Xl + l)l

2.9} 1 21'
<Y N [P A 1 + (P2l )

1=l
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Since (1 +|pz|y) > (1 +(Pz HQHZ) for all 1 > 0 this becomes

x )
|£(x) ~ £(x(w) | < (L + 1Pz llgr) Y IPe Iy

=

<Pzl +1Pz )
B e 123774

AT

which proves the lemma.

Theorem VIL.1: Let z* denote the minimum value of f(x) for problem QP. After

O(L/8) outer iterations, the algorithm obtains y = u¥ such that muF <2~ O(L) 4nd
a point x = x* * ! such that f(x) ~2* < (1 +§(_l—t>q—%) 2~ O

Proof: The duality gap at x(yk) is mpk, and at the end of the k" outer iteration

we have (|pz |y < 7. This along with Lemma VIL35 gives us

f(x) — z* = f(x(uF)) — 2% + f(x) — f(x(uk)) < mpk + %/‘k
Sm#k<1+(;(_1-:)%) (A1.12)

To show muk <2 O(L), note that myk =m(1 - 9)’“;10, and p0 < 20(L) is assumed.

So we need a value of k such that
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m(1 —)20H) < 2= 0)

Taking logarithms,

kln(1 -8)+ O(L) + In(m) < —O(L)

O(L) + In(m)
k2= 09

and since In(m) < O(L) and § < —In(1 —8), we ob.
k2 0(3)
which completes the proof.

Lemma VIL6: Let A = Then

TH IR
B(x,1) = B(x +X prot) 2 [Pl — (1 + Pz r)
Proof: The Taylor series expansion for ®(x + Apg,u) is
B(x + Apopt) = B(x,41) + AVS(x,1)Tp, + IA2pTHp, +;cht ; (A1.13)
where t j denotes the j”’ term of the Taylor expansion. For j > 3, the jth term may

be computed as
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<2 E (s e )| < A—j(g (s~"ps) )”2 =2 |s-1p, p
1=
and by Lemma VIL.2,

j .
|t <2 1Pz (Al.14)

Expanding the linear and quadratic terms of the Taylor series and again using

Lemma VII.2, we obtain
AV®(x,1)Tp, + 1A% THp, = — AV®(x,1)TH ~ 'HH ~ 1V®(x.u) + SA%pTHp,
=( =2 +3¥) 1Pz - (AL.15)
Substituting (Al.14) and (A1.15) into (Al.13) yields

Q0 v .
B(x + Apzopt) < B(xpr) +( = A+ 302 ypz iy + 23*7] 1Pz It (A1.16)
]:

Furthermore, the Taylor series expansion of — ln(l — NPz ”H) is

— In(1 = Npzlg)= = In(1)+ Npzlgy + f NPzl ) + 5 Mpeln P + 4 Mpztg ) +- - -
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which 1mplies

o0

Jj .
ZS”\T 1Pzl = = (1= NPzl ) = NPz lly ~ Mzl ) (ALLT)
]:

Now we substitute (A1.17) into (A1.16) and find

B(x + Apy.pt) < B(xept) = NPz Iy — In(1 = Nipz g ) = NPz lg-

1

The right hand side is minimized by A= =——=—— so
L +§pzin

B(x,) = B(x + N propt) 2 X P21+ Pz lir) — 7(1 = X P2y )
=Pzl — 71 +|Pzlgr)

which proves the lemma.

Corollary VIL6: Let 7 <|pz|y < % Then a pure Newton step (A = 1) obtains
B(x,p) —B(X+peop) A =72 +In(l—1)+7>0

Proof: Using a step size of A = 1, from Lemma VII.6 we have
(x + propt) < 8(x,p2) = P2y — (1~ Pzllg) ~ NPz g

or equivalently
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B(x,t) = B(x +Prpt) 2 [Pzl + (1 =Pz llnr) + 1Pz it (A1.18)

The right hand side of (A1.18) is positive and increasing for 0 < | p; |y < %, so

0 <7 <|pzly < 5 implies
0<A=7"+In(l—7)+7 < B(xp) - B(x + pz.pt)

which completes the corollary.

‘ 2 (l+7)
Theorem VIL2: Let A=71—In(l+7) Eg = L Ef =4 and N denote

-7

the number of inner iterations required for an arbitrary outer iteratation. Then N

is bounded as:

1/ 8
N < Z(IT(? (0m + 2Ef\1fn‘)+ E(p)

Proof: Anstreicher’s proof is a generalization of a proof by Gonzaga for the linear
case. The (k + 1)%¢ outer iteration begins with the point (xk,yk) and

'lp(xk,,u’c - l),‘.”H <r7forH= H(xk,,u’c ~1). Let N denote the number of inner
iterations. Lemma VII.6 shows that each inner iteration will decrease ®( - ,uk) by
at least A. Following the N iterations, we have x* *+1 with “p(xlc+ I.uk)I”H < 7 for

H = H(x*+14%). So

AN < &(xk,uk) — d(xF +1 4k), (A1.19)
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The right hand side can be bounded. From the definition of ®(x.x),

. - f(x f(x
e R =
_ f
= a(xut =1 + (1 )
7

and this leads to
B(sck k) — B(xck 1 uk) = B(xk k= 1) p(xk +1 k= 1)
+(1y i) k). (A1.20)
Analyzing (f(xk) —f(xF+ 1)), we use the the fact that x* and x* * ! are

approximately centered with respect to uk ~1and ;Lk respectively, and Lemma

VIL5 to obtain
f(xF) = 105 1) < f(x(ph =) + Bt =N — f(x(1)) + E putvem
= f(x(s* = 1) — f(x(u*) + Ef(2 - )t ~ .
Recall the dual objective function d(x,u) from Lemma VII.1, and u(x,u) from
Lemma VII.2. Since u(x(p),x) is dual feasible, with the monotonicity with respect
to p of the dual objective function we have

f(xk) — £(xE + 1) < f(x(pf 1) — d(x(uF 1), u(x(uF ~ ek -1
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+ d(x(pb). u(xl pb) k) — fx (b)) + Ep(2 = 8)p* ~
< f(x(uF = 1) = dix(ef Y ulx(pf D)
— (g0x()) = (). (b)) )+ 2E gt~ e
< mpk ! JHWL-+2EWA-—1@
< mph ! _uwk—l +9muk~1+2Efﬂk—lm
< uk- 1(9m+2Efm). (A1.21)

We can now use Lemma VIL.4 with |pzjy < 7 x* nearly centered with respect to

pk =1 and x(,uk ~ 1Y minimizing ‘P(x,yk ~1) to achieve
B(xk k1)~ p(xF Lkl = B(xk k= 1) — p(x(pt ~ )k~ 1)
+(x(pk = )t ) — okt 1 k=1
< @(xkuk =) - @(x(uf T pf T
<Eq (A1.22)
Finally, substitution of (A1.21) and (A1.22) into (A1.20) yields
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k k k+1 &k 0 1 k-1
o(x*.pt) —P(x N )-<-E<I>+(_—'1 gy }———uk_],u (9m+2Ef\Jm)
g

and substitution of this inequality into (A1.19) proves the theorem:.
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